Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Аналитическая философия - Блинов Аркадий Леонидович - Страница 104
Первое систематическое изложение модальной логики дано Лукасевичем в работе с названием «Философские замечания о многозначных системах исчисления предложений.»[1930] Правда, здесь не представлена система модальной логики как таковая, но только показаны требования, которым должна, по мнению Лукасевича, удовлетворять такая система. Модальными предложениями Лукасевич называет следующие четыре выражения:
(1) возможно, что p – символически : Mp;
(2) невозможно, что p – символически : NMp;
(3) возможно, что не-p – символически : MNp;
(4) невозможно, что не-p – символически : NMNp.
Традиционные утверждения о модальностях по мнению Лукасевича можно разделить на три группы. К первой группе относятся предложения следующего вида: (a) Ab oportere ad esse valet consequentia (Если что-либо необходимо, то оно существует); (b) Ab esse ad posse valet consequentia (Если что-либо существует, то оно возможно); (с) Ab non posse ad non esse valet consequentia (Если что-либо невозможно, то оно не существует). Общим представителем этой группы является предложение
(I): Если невозможно, что p, то не-p.
Вторую группу составляет утверждение Лейбница из «Теодицеи»: (d) Unumquodque, quando est, oportet esse (Чтобы то ни было, когда оно существует – оно необходимо). Лукасевич замечает, что последнее высказывание в действительности происходит от Аристотеля и разбирает возможные интерпретации Стагирита. В результате анализа оказывается, что слово «quando» в предложении (d), как и соответствующее ему «hotan» у Аристотеля, являются частицами, выражающими не условие, но время. Однако временная форма переходит в условную форму, поскольку в связанных временными рамками предложениях определение времени оказывается включенным в содержание предложений.276
Предложение (d) имеет следующую эквивалентную формулировку
(II): Если предполагается, что не-p, то невозможно, что p.
Третью группу представляет аристотелевский принцип обоюдной возможности
(III): Для некоторого p, возможно, что p, и возможно, что не-p.
Мы опустим здесь технические подробности решения Лукасевичем проблемы модальностей,но он видит в использовании трехзначной логики, а точнее – в нахождении в L3 такого определения возможности, которое бы выполняло условия, очерченные в (I)-(III). Удовлетворительная дефиниция должна быть прочитана следующим образом: "возможно, что p значит то, что «или предложение p и не-p равнозначны, или не существует такой пары противоречивых предложений, которые бы следовали из предложения p». В более общем значении аналогичное в этом контексте понятие возможности предложил в 1921 г. Тарский: Mp=CNpp. Дефиниенс этого определения ложен тогда и только тогда, когда p=1/2. Из этого определения и таблиц для C и N получаем равенства: M0=0, M1/2=1, M1=1. Согласно этим равенствам, если предложение p ложно, то ложно также и предложение Mp, но Mp истинно, когда p истинно или p принимает третье значение. Этот результат Лукасевич посчитал наиболее согласованным с интуицией. Определение необходимости имеет вид Lp=NCpNp в соответствии с общепринятой схемой Lp=NMNp. Заканчивая свое первое систематическое изложение модальной логики в духе логики многозначной Лукасевич полностью принимает изложенные выше определения возможности и необходимости: « Решительно не высказываясь об интуитивном смысле приведенной выше дефиниции, мы должны однако признать, что эта дефиниция удовлетворяет всем условиям, определенным в утверждениях (I)-(III), и в частности, как это доказал г.Тарский, что это единственная возможная в трехзначной системе дефиниция, выполняющая эти условия»277.
Поскольку позже Лукасевич вернулся к проблематике модальной логики, то естественно считать, что первое ее изложение не удовлетворяло его. Новое изложение278 [1953] модальной логики Лукасевич начинает с изложения условий, которым по его мнению должна удовлетворять такая логика:
(1) утверждается импликация CpMp;
(2) отбрасывается импликация CMpp;
(3) отбрасывается предложение Mp;
(4) утверждается импликация CLpp;
(5) отбрасывается импликация CpLp;
(6) отбрасывается предложение NLp;
(7) утверждается эквивалентность EMpNLNp;
(8) утверждается эквивалентность ELpNMNp.
Понятия «утверждения» и «отбрасывания» принадлежат системе и обозначаются соответственно "((" и "((". Первое условие соответствует принципу Ab esse ad posse valet consequentia. Второе условие соответствует высказыванию A posse ad esse non valet consequentia. В третьем условии говорится, что не все выражения, начинающиеся с M утверждаются, поскольку в противном случае Mp было бы равносильно функции «verum от p», которая не является модальной функцией. Четвертое условие соответствует принципу Ab oportere ad esse valet consequentia. Пятое условие соответствует высказыванию Ab esse ad oportere non valet consequentia. В шестом условии говорится, что не все выражения, начинающиеся с NL являются утверждениями, поскольку в противном случае Lp было бы равносильно функции «falsum от p», которая не является функцией модальности. Последние два условия представляют очевидные связи между возможностью и необходимостью.
Лукасевич предлагает для «основной модальной логики» следующую совокупность формул в качестве аксиом: (A1) (( CpMp, (A2) ((CMpp, (A3) ((Mp, (A4) (( EMpMNNp с правилами замены по определению (Lx=NMNx), подстановки в утвержденное выражение, подстановки в отбрасываемое выражение (если а отбрасывается и а есть подстановка b, то b должно быть отброшено), отделения для утвержденных выражений и отделения для отбрасываемых выражений (если Cxy утверждено, а y – отброшено, то x также отброшено). С использованием знака необходимости (A1)-(A4) преобразуются в: (A5) (( CLpp, (A6) ((CpLp, (A7) ((NLp, (A8) (( ELpLNNp. Особенно важными по мнению Лукасевича являются аксиомы (A4) и (A8). Поскольку они весьма похожи, то возникает мысль, что они имеют в своем основании некий общий принцип, из которого их можно вывести. А это значит, что «основная модальная логика» не полна. Это допущение подтверждается тем фактом, что формулы MKpqMp, CMKpqMq (если возможна конъюнкция, то возможен каждый из ее членов), а также CLKpqLp, CLKpqLq (если необходима конъюнкция, то необходим каждый из ее членов) независимы от «основной модальной логики». Не выводимы из (A1)-(A4) (либо же из (A5)-(A8)) следующие законы, известные уже Аристотелю: (a) CCpqCMpMq, (b) CCpqCLpLq, (c) CLCpqCMpMq, (d) CLCpqCLpLq. Можно показать, что из (a) следует (c), а из (b) – (d). Поэтому следовало расширить «основную модальную логику», присоединяя к ее аксиомам формулы (a)-(d). Формулы (a) и (c) можно считать частными случаями закона экстенсиональности CEpqCfpfq ("f" означает переменный функтор). Присоединяя (a) к (A1)-(A3) можно доказать (A4); аналогично присоединяя (c) к (A5)-(A7) можно доказать (A8). Однако обе конструкции Лукасевич считает недостаточно общими. Окончательная формулировка модальной системы основывается на упоминавшемся выше результате ученика Лукасевича – Мередита, утверждавшего, что L2 и закон экстенсиональности следуют из формулы CfpCfNpfq. Окончательно аксиоматика модальной логики у Лукасевича принимает следующий вид: ((CfpCfNpfq, ((CpMq, ((CMpp, ((Mp. L-система содержит исчисление высказываний L2, но не является двузначной. Лукасевич показал, что адекватной матрицей для L-системы является следующая четырехзначная матрица (1 является выделенным значением):
СС
11
22
33
44
ТN
MM
11
11
32
33
44
44
11
22
11
11
33
33
33
22
- Предыдущая
- 104/289
- Следующая
