Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ВЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 23
Э. Г. Позняк.
Вектор состояния
Ве'ктор состоя'ния, величина, играющая в квантовой теории поля такую же роль, как волновая функция в квантовой механике . Квадрат абсолютного значения (модуля) В. с. указывает вероятность состояния.
Векторкардиография
Векторкардиогра'фия (от вектор, греч. kardía — сердце и ...графия ), метод пространственного (объёмного) исследования электрического поля сердца; один из видов электрокардиографии . В. предложена в 1913 голландским учёным В. Эйнтховеном.
Векторметр
Векторме'тр, электрический прибор для измерений среднего значения силы и фазы переменного тока или электрического напряжения. При отсутствии в измеряемой величине чётных гармоник В. позволяет измерять мгновенные значения силы тока и напряжения и строить кривые их изменения во времени. На рис. приведена схема, поясняющая принцип действия В.: исследуемое переменное напряжение Ux подаётся на зажимы магнитоэлектрического вольтметра V через прерыватель К, который работает под воздействием электромагнита, включенного на вспомогательное управляющее напряжение UK . При совпадении по фазе напряжения Ux с напряжением UK контакты К замыкаются и остаются в таком положении на протяжении положительного полупериода изменения Ux , в этом случае вольтметр покажет половину среднего значения напряжения Ux . При изменении фазы напряжения Ux по отношению к фазе напряжения UK на вольтметр будет подаваться в течение некоторой части периода отрицательное напряжение второго полупериода, и показание прибора уменьшится. При сдвиге фаз UK и Ux на 90° вольтметр покажет 0. Источник управляющего напряжения снабжается устройством (со шкалой) для отсчёта фазы UK . Изменяя фазу UK до получения максимального показания вольтметра, то есть до совпадения по фазе напряжений UK и Ux , находят по шкале источника управляющего напряжения фазу Ux . Промышленность СССР изготовляет В. такого типа с синхронным микродвигателем в качестве прерывателя К. Эти приборы, предназначенные для измерений в цепях переменного тока с частотой 50 гц, имеют пределы измерений по напряжению от 0,15 до 300 в, по силе тока от 0,003 до 5 а и по фазе от 0 до 360°. Пределы измерений могут быть изменены при дополнительном включении наружных шунтов, отдельных добавочных сопротивлений и измерительных трансформаторов. В. применяют при лабораторных исследованиях сложных электрических схем и устройств, а также при испытании магнитных свойств электротехнических сталей.
Н. Г. Вострокнутов.
Схема действия векторметра.
Векторная диаграмма
Ве'кторная диагра'мма, графическое изображение значений периодически изменяющихся величин и соотношений между ними при помощи направленных отрезков — векторов .
В. д. широко применяются в электротехнике, акустике, оптике и т. п.
Простые гармонические функции одного периода, например
a1 = B1 sinwt, f2 = B2 sin(a + wt ),
f3 = B3 sin(b + wt ),
могут быть представлены графически (рис .) в виде проекции на ось Оу векторов
вращающихся с постоянной угловой скоростью w , причём и повёрнуты относительно на углы a и b . Длина векторов соответствует амплитудам колебаний:
Сумма или разность двух и более колебаний на В. д. обозначается как геометрическая сумма или разность векторов составляющих колебаний, полученная по правилу параллелограмма, а мгновенное значение искомой величины определяется проекцией вектора суммы на ось Оу.
Например, требуется найти сумму F колебаний f1 с амплитудой и f2 амплитудой . При геометрическом сложении векторов и по В. д. находим, что амплитуда суммарного колебания F равна длине вектора и опережает по фазе колебание f1 на угол j .
Рис. к ст. Векторная диаграмма.
Векторное исчисление
Ве'кторное исчисле'ние, математическая дисциплина, в которой изучают свойства операций над векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и направленностью (например, сила, ускорение, скорость).
Возникновение и развитие В. и. Возникновение В. и. тесно связано с потребностями механики и физики. До 19 в. для задания векторов использовался лишь координатный способ, и операции над векторами сводились к операциям над их координатами. Лишь в середине 19 в. усилиями ряда учёных было создано В. и., в котором операции проводились непосредственно над векторами, без обращения к координатному способу задания. Основы В. и. были заложены исследованиями английского математика У. Гамильтона и немецкого математика Г. Грасмана по гиперкомплексным числам (1844—50). Их идеи были использованы английским физиком Дж. К. Максвеллом в его работах по электричеству и магнетизму. Современный вид В. и. придал американский физик Дж. Гиббс. Значительный вклад в развитие В. и. внесли русские учёные. В первую очередь следует отметить работы М. В. Остроградского. Им была доказана основная теорема векторного анализа (см. Остроградского формула ). Исследования казанского математика А. П. Котельникова по развитию винтового исчисления имели важное значение для механики и геометрии. Эти исследования были продолжены советскими математиками Д. Н. Зейлигером и П. А. Широковым. Большое влияние на развитие В. и. имела книга «Векторный анализ», написанная в 1907 русским математиком П. О. Сомовым.
Векторная алгебра. Вектором называют направленный отрезок (рис. 1 ), то есть отрезок, у которого указаны начало (называется также точкой приложения вектора) и конец. Длина направленного отрезка, изображающего вектор, называется длиной, или модулем, вектора. Длина вектора a обозначается |a |. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаково направлены. Все нулевые векторы считаются равными. Изображенные на рис. 1 векторы а и b коллинеарны и равны. В В. и. рассматриваются свободные векторы.
- Предыдущая
- 23/267
- Следующая