Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ВЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 27
Рис. 6 к ст. Векторное исчисление.
Рис. 5 к ст. Векторное исчисление.
Рисунки 8, 9 к ст. Векторное исчисление.
Рисунки 1—4 к ст. Векторное исчисление.
Рис. 7 к ст. Векторное исчисление.
Векторное поле
Ве'кторное по'ле , область, в каждой точке Р которой задан вектор а (Р ). Математически В. п. может быть определено в данной области G посредством вектор-функции a (Р ) переменной точки Р этой области. К понятию В. п. приводит целый ряд физических явлений и процессов (например, векторы скоростей частиц движущейся жидкости в каждый момент времени образуют В. п.). Теория В. п. широко разработана и имеет разнообразные применения в различных областях естествознания (см. Векторное исчисление ).
Лит.: Будак Б. М.. Фомин С. В., Кратные интегралы и ряды, 2 изд., М., 1967.
Э. Г. Позняк.
Векторное произведение
Ве'кторное произведе'ние вектора а на вектор b — вектор, обозначаемый [а, b ] и определяемый так: 1) длина вектора [а, b ] равна произведению длин векторов а и b на синус угла j между ними (берётся тот из двух углов между а и b , который не превосходит p ), 2) вектор [а, b ] перпендикулярен вектору а и вектору b , 3) тройка векторов а , b , [а, b ], согласно с ориентацией пространства, всегда правая или всегда левая (см. Векторное исчисление ). В. п. широко применяется в геометрии, механике и физике (например, момент силы F, приложенной к точке М относительно точки О , есть В. п. [, F ]).
Лит.; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1968.
Э. Г. Позняк.
Векторное пространство
Ве'кторное простра'нство, математическое понятие, обобщающее понятие совокупности всех (свободных) векторов обычного трёхмерного пространства.
Определение В. п. Для векторов трёхмерного пространства указаны правила сложения векторов и умножения их на действительные числа (см. Векторное исчисление ). В применении к любым векторам х, у, z и любым числам a, b эти правила удовлетворяют следующим условиям (условия А):
1) х + у = у + х (перестановочность сложения);
2) (х + у ) + z = x + (y + z ) (ассоциативность сложения);
3) имеется нулевой вектор (или нуль-вектор), удовлетворяющий условию x + 0 = x: для любого вектора x;
4) для любого вектора х существует противоположный ему вектор у такой, что х + у = 0 ,
5) 1 · х = х,
6) a (bx ) = (ab ) х (ассоциативность умножения);
7) (a + b ) х = aх + bх (распределительное свойство относительно числового множителя);
8) a (х + у ) = aх + aу (распределительное свойство относительно векторного множителя).
Векторным (или линейным) пространством называется множество R, состоящее из элементов любой природы (называемых векторами), в котором определены операции сложения элементов и умножения элементов на действительные числа, удовлетворяющие условиям А (условия 1—3 выражают, что операция сложения, определённая в В. п., превращает его в коммутативную группу). Выражение
a1 e1 + a2 e2 + … + an en (1)
называется линейной комбинацией векторов e1 , e2 ,..., en с коэффициентами a1 , a2 ,..., an . Линейная комбинация (1) называется нетривиальной, если хотя бы один из коэффициентов a1 , a2 ,..., an отличен от нуля. Векторы e1 , e2 ,..., en называются линейно зависимыми, если существует нетривиальная комбинация (1), представляющая собой нулевой вектор. В противном случае (то есть если только тривиальная комбинация векторов e1 , e2 ,..., en равна нулевому вектору) векторы e1 ,e2 ,..., en называется линейно независимыми.
Векторы (свободные) трёхмерного пространства удовлетворяют следующему условию (условие В): существуют три линейно независимых вектора; любые четыре вектора линейно зависимы (любые три ненулевых вектора, не лежащие в одной плоскости, являются линейно независимыми).
В. п. называется n-мepным (или имеет «размерность n» ), если в нём существуют n линейно независимых элементов e1 , e2 ,..., en , а любые n + 1 элементов линейно зависимы (обобщённое условие В). В. п. называются бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мepного В. п. образуют базис этого пространства. Если e1 , e2 ,..., en — базис В. п., то любой вектор х этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:
x = a1 e1 + a2 e2 +... + an en .
При этом числа a1 , a2, ..., an называются координатами вектора х в данном базисе.
Примеры В. п. Множество всех векторов трёхмерного пространства образует, очевидно, В. п. Более сложным примером может служить так называемое n-мерное арифметическое пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел: l 1 , l 2 ,..., l n . Сумма двух векторов и произведение на число определяются соотношениями:
(l1 , l2 , …, ln ) + (m1 , m2 , …, mn ) = (l1 + m1 , l2 + m2 , …, ln + mn );
a (l1 , l2 , …, ln ) = (al1 , al2 , …, aln ).
Базисом в этом пространстве может служить, например, следующая система из n векторов e1 = (1, 0,..., 0), e2 = (0, 1,..., 0),..., en = (0, 0,..., 1).
Множество R всех многочленов a + a1 u + … + an un (любых степеней n ) от одного переменного с действительными коэффициентами a , a1 ,..., an с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует В. п. Многочлены 1, u, u2 ,..., un (при любом n ) линейно независимы в R, поэтому R — бесконечномерное В. п.
- Предыдущая
- 27/267
- Следующая