Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ЛО) - Большая Советская Энциклопедия "БСЭ" - Страница 21
Если Qn есть n-местная предикатная переменная, a x1,..., xn — предметные переменные, то выражение Qn (x1,..., xn) есть, по определению, атомарная (элементарная) формула. Индекс n у предикатной переменной в атомарной формуле обычно опускается. Содержательно Q (x1,..., xn) означает высказывание, гласящее, что объекты x1,..., xn связаны отношением Q. Формулами считаются атомарные формулы, а также выражения, получаемые из них посредством следующих операций образования новых формул из уже полученных: 1) если j и — формулы, то (j&), (j), (jÉ) и ùj — также формулы; 2) если j — формула и х — предметная переменная, то "xj, $xj — формулы. Определением формулы заканчивается описание языка исчисления предикатов.
Вхождение предметной переменной х в формулу j называется связанным, если х входит в часть j вида $xj или "xj или стоит непосредственно после знака квантора. Несвязанные вхождения переменной в формулу называются свободными. Если найдётся хоть одно свободное вхождение х в j, то говорят, что переменная х входит свободно в j или является параметром j. Интуитивно говоря, формула j с параметрами выражает некоторое условие, которое превращается в конкретное высказывание, если (конкретизировав предварительно область объектов) приписать определённые значения входящим в формулу параметрам и предикатным буквам. Связанные же переменные не имеют самостоятельного значения и служат (вместе с соответствующими кванторами) для обозначения общих утверждений или утверждений существования. Если j — формула, а х и у — предметные переменные, то через j(х½у) будет обозначаться результат замещения всех свободных вхождений x в j на y (а если при этом у оказалось на месте х в части формулы вида "y или $y, то следует дополнительно заменить все связанные вхождения у в эту часть на переменную, не входящую в j; это делается для того, чтобы не допустить искажения смысла j при замене х на у).
Пусть j, , h — произвольные формулы, а х и у — предметные переменные. Тогда формулы следующих видов принимаются в качестве аксиом классического исчисления предикатов:
1. (jÉ(Éh)),
2. ((jÉ(Éh))É((jÉ)É(jÉh))),
3. ((j&)Éj),
4. ((j&)É),
5. (jÉ(É(j&))),
6. ((jÉh)É((Éh)É((j)Éh))),
7. (jÉ(j)),
8. (É(j)),
9. (ùjÉ)(jÉ)),
10. ((jÉ)É((jÉù)Éùj))
11. (jùj),
12. ("xjÉj(x/y)),
13. (j(x/y) É$xj).
В исчислении предикатов употребляются след. три правила вывода. 1) Правило вывода заключений: из формул j и (jÉ) выводится формула . Два кванторных правила вывода: 2) из формулы (jÉ), где не содержит свободно х, можно вывести (jÉ"x); 3) из формулы (jÉ), где не содержит свободно х, можно вывести ($xjÉ).
В отличие от других формулировок исчисления (см., например, Логика, раздел Предмет и метод современной логики), здесь j, и h не принадлежат языку рассматриваемого исчисления, а обозначают его произвольные формулы; поэтому каждая из записей 1—13 есть аксиомная схема, «порождающая» при подстановке вместо греческой буквы некоторую конкретную аксиому; специальных правил подстановки при этой формулировке не надо.
Интуиционистское исчисление предикатов отличается от классического лишь тем, что закон исключенного третьего (аксиома 11) исключается из числа аксиом. Различие двух исчислений отражает различие в их истолкованиях. Истолкование логических связок &, , É, ù в исчислениях предикатов таково же, как и в соответствующих исчислениях высказываний. Что касается истолкования кванторов, то в классическом исчислении предикатов кванторы трактуются с точки зрения актуальной бесконечности. Точнее, каждая формула получает значение «истина» или «ложь», если определить модель исчисления предикатов, т. е. определить множество объектов, приписать каждой предикатной букве формулы некоторое отношение на этом множестве и приписать всем параметрам формулы некоторые объекты в качестве значений. Формула называется классически общезначимой, если она в любой модели принимает значение «истина». Как показал К. Гёдель, в классическом исчислении предикатов выводимы все классически общезначимые формулы, и только они. Эта теорема Гёделя и представляет собой точное выражение идеи формализации логики: в классическом исчислении предикатов выводятся все логические законы, общие для всех моделей.
- Предыдущая
- 21/82
- Следующая