Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ОП) - Большая Советская Энциклопедия "БСЭ" - Страница 13
Развитию О. и. в капиталистических странах большой ущерб наносили ремесленничество, стандартизация изобразительной формы, насаждавшиеся кинопредпринимателями, влияние антиреалистических тенденций, голливудских эстетических норм в выборе планов, композиций мизансцен, схем освещения. Однако лучшие представители О. и. стремились обогащать и совершенствовать своё мастерство, правдиво отражать жизнь, развивать прогрессивные традиции национального изобразительного искусства. Большой вклад в О. и. разных периодов развития кинематографа внесли операторы Германии, Франции, США, Италии, Мексики, Японии. Значительных успехов достигли мастера О. и. Польши и др. зарубежных социалистических стран.
Лит.: Головня А., Свет в искусстве оператора, М., 1945; его же, Мастерство кинооператора, М., 1965; Косматов Л., Операторское мастерство, М., 1962; его же, Свет в интерьере, М., 1973; Ильин Р. Н., Изобразительные ресурсы экрана, М., 1973.
А. Д. Головня.
Операторы
Опера'торы в квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики и квантовой теории поля и служащее для сопоставления определённому вектору состояния (или волновой функции) y др. определённых векторов (функций) y'. Соотношение между y и y' записывается в виде y' = y, где — оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О. (О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) y, т. е. на величину, описывающую состояние физической системы.
Простейшие виды О., действующих на волновую функцию y(х ) (где х — координата частицы), — О. умножения (например, О. координаты , y = х y) и о. дифференцирования (например, О. импульса , y = , где i — мнимая единица, — постоянная Планка). Если y — вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу — матрицу .
В квантовой механике в основном используются линейные операторы . Это означает, что они обладают следующим свойством: если y1 = y'1 и y2 = y'2 , то (c1 y1 + c2 y2 ) = c1 y'1 + c2 y'2 , где c1 и с2 — комплексные числа. Это свойство отражает суперпозиции принцип — один из основных принципов квантовой механики.
Существенные свойства О. определяются уравнением yn = ln yn , где ln — число. Решения этого уравнения yn называется собственными функциями (собственными векторами) оператора . Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение ln . Числа ln называется собственными значениями О. , а их совокупность — спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее y n , имеет решение при любом значении ln (в определённой области), во втором — решения существуют только при определённых дискретных значениях ln . Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил — непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.
Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии y должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) yn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов .
С О. можно производить алгебраич. действия. В частности, под произведением О. 1 и 2 понимается такой О. =12 , действие которого на вектор (функцию) y даёт y = y’’, если 2 y = y’ и 1 y’ = y’’. Произведение О. в общем случае зависит от порядка сомножителей, т. е .12 ¹21 . Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство 12 =21 (см. Перестановочные соотношения ).
- Предыдущая
- 13/65
- Следующая