Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ТВ) - Большая Советская Энциклопедия "БСЭ" - Страница 8
В исключительных случаях, например в твёрдом Не, возможно туннельное «просачивание» атомов из одного положения равновесия в другое (см. Туннельный эффект). Эта «квантовая» диффузия приводит к тому, что коэффициент диффузии ¹ 0 при Т ® 0 К. Делокализация атомов, связанная с туннельными переходами, превращает примесные атомы и вакансии в своеобразные квазичастицы (примесоны, вакансионы). Они определяют свойства квантовых кристаллов.
Тепловые свойства Т. т. У большинства Т. т. теплоёмкостьС при комнатных температурах приближённо подчиняется Дюлонга и Пти закону: С = 3R кал/моль (R — газовая постоянная). Закон Дюлонга и Пти — следствие того, что за тепловые свойства Т. т. при высоких температурах ответственны колебательные движения атомов, подчиняющиеся закону равнораспределения (средняя энергия, приходящаяся на одну колебательную степень свободы, равна kT). Наблюдаемые при высоких температурах отклонения от закона Дюлонга и Пти объясняются повышением роли ангармонизма колебаний. Понижение температуры приводит к уменьшению теплоёмкости; благодаря квантовому «замораживанию» средняя энергия колебания Ek, определяемая выражением: , меньше kT. При самых низких температурах часть теплоёмкости, обусловленная колебаниями решётки, С ~ T3. Колебательная часть теплоёмкости Т. т. может быть представлена как теплоёмкость газа фононов.
Переход от классического значения теплоёмкости С = 3R к квантовому С ~ T3 наблюдается при характерной для каждого Т. т. температуре q, называемой Дебая температурой, физический смысл которой определяется соотношением: . Отсюда следует, что при Т <. q в Т. т. есть колебания, к которым необходимо применять квантовые законы. Для большинства Т. т. q колеблется в пределах 102—103 K. У молекулярных кристаллов q аномально низка (» 10 К).
Температурная зависимость колебательной части теплоёмкости при Т << q, как и её значение при Т >> q, одинакова для всех Т. т. (рис. 1), в частности и аморфных. В промежуточной области температур теплоёмкость зависит от детальных свойств n(w), то есть от конкретного распределения частот по спектру Т. т. Вблизи Т = 0 К из-за уменьшения колебательной части теплоёмкости Т. т. проявляются другие (неколебательные), низко расположенные уровни энергии Т. т. Так, в металлах при (EF — энергия Ферми, см. ниже) основной вклад в теплоёмкость вносят электроны проводимости (электронная часть теплоёмкости ~ Т), а в ферритах при Т £ q2/Тс (Tc— температура Кюри) — спиновые волны (магнонная часть теплоёмкости ~ T, см. ниже). Квантовое «замораживание» большинства движений в Т. т. при Т ® 0 К позволяет измерить ядерную теплоёмкость и теплоёмкость, обусловленную локальными колебаниями частиц.
Важной характеристикой тепловых свойств Т. т. служит коэффициент теплового расширения (V - объем Т. т., р — давление). Отношение a/С не зависит от температуры (закон Грюнайзена). Хотя закон Грюнайзена выполняется приближённо, он качественно правильно передаёт температурный ход a. Тепловое расширение — следствие ангармоничности колебаний (при гармонических колебаниях среднее расстояние между частицами не зависит от температуры).
Теплопроводность зависит от типа Т. т. Металлы обладают значительно большей теплопроводностью, чем диэлектрики, что связано с участием электронов проводимости в переносе тепла (см. ниже). Теплопроводность — структурно чувствительное свойство. Коэффициент теплопроводности зависит от кристаллического состояния (моно- или поликристалл), наличия или отсутствия дефектов и т. п. Явление теплопроводности удобно описывать, используя концепцию квазичастиц. Все квазичастицы (прежде всего фононы) переносят тепло, причём, согласно кинетической теории газов, вклад каждого из газов квазичастиц в коэффициент теплопроводности можно записать в виде: , где g — численный множитель, С — теплоёмкость, — средняя тепловая скорость, l — длина свободного пробега квазичастиц. Величина l определяется рассеянием квазичастиц, которое в случае фонон-фононных столкновений — следствие ангармоничности колебаний.
Из-за участия в тепловых свойствах разнообразных движений, присущих Т. т., температурная зависимость большинства характеристик Т. т. очень сложна. Она дополнительно осложняется фазовыми переходами, которые сопровождаются резким изменением многих величин (например, теплоёмкости) при приближении к точке фазового перехода.
Электроны в Т. т. Зонная теория. Сближение атомов в Т. т. на расстоянии порядка размеров самих атомов приводит к тому, что внешние (валентные) электроны теряют связь с определённым атомом — они движутся по всему Т. т., вследствие чего дискретные атомные уровни энергии расширяются в полосы (энергетические зоны). Зоны разрешенных энергий могут быть отделены друг от друга зонами запрещенных энергий, но могут и перекрываться. Глубинные атомные уровни расширяются незначительно, уровни, соответствующие внешним оболочкам атома, расширяются настолько, что соответствующие энергетические зоны обычно перекрываются. Индивидуальность зон, однако, сохраняется: состояния электронов с одной и той же энергией, но принадлежащие разным зонам, различны.
В кристаллах состояние электрона в зоне благодаря периодичности сил, действующих на него, определяется квазиимпульсом р, а энергия электрона E — периодическая функция квазиимпульса: . [ — закон дисперсии, s — номер зоны]. В аморфных телах, хотя состояние электрона не определяется квазиимпульсом (квазиимпульс ввести нельзя), зонный характер электронного энергетического спектра сохраняется. Строго запрещенных зон энергии в аморфных телах, по-видимому, нет, однако есть квазизапрещённые области, где плотность состояний меньше, чем в разрешенных зонах. Движение электрона с энергией из квазизапрещённой области локализовано, из разрешенной зоны — делокализовано (как в кристалле).
В соответствии с Паули принципом в каждом энергетическом состоянии может находиться не более двух электронов. Поэтому в каждой энергетической зоне кристалла может поместиться не более 2N электронов, где N — число уровней в зоне, равное числу элементарных ячеек кристалла. При Т ® 0 К все электроны занимают наиболее низкие энергетические состояния. Существование Т. т. с различными электрическими свойствами связано с характером заполнения электронами энергетических зон при Т = 0 К. Если все зоны либо полностью заполнены электронами, либо пусты, то такие Т. т. не проводят электрического тока, то есть являются диэлектриками (рис. 2, а). Т. т., имеющие зоны, частично заполненные электронами, — проводники электрического тока — металлы (рис. 2, б). Полупроводники представляют собой диэлектрики (нет частично заполненных зон при Т= 0 К) со сравнительно малой шириной запрещенной зоны между последней заполненной (валентной) зоной и первой (свободной — зоной проводимости, (рис. 2, в). Наличие дефектов и примесей в кристалле приводит к возникновению дополнительных (примесных) энергетических уровней, располагающихся в запрещенной зоне. У полупроводников эти уровни часто расположены очень близко либо от валентной зоны (рис. 2, д), либо от зоны проводимости (рис. 2, г). Т. т. с аномально малым перекрытием валентной зоны и зоны проводимости называется полуметаллами (например, у Bi ширина перекрытия ~ 10-5 ширины зоны). Существуют бесщелевые полупроводники, у которых зона проводимости примыкает к валентной (например, сплавы Bi — Sb, Hg — Те с определённым соотношением компонент).
- Предыдущая
- 8/18
- Следующая