Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович - Страница 113
Задача о характере поля тяготения в сферически-симметричном случае с учетом эффектов общей теории относительности сразу же после опубликования классической работы Эйнштейна была точно решена выдающимся немецким астрофизиком К. Шварцшильдом (отцом ныне здравствующего профессора М. Шварцшильда, так много сделавшего для теории эволюции звезд). Пользуясь решением К. Шварцшильда, можно найти зависимость радиуса коллапсирующей звезды от времени так, как это представляется по часам «внешнего» (например, земного) наблюдателя:
(24.1)где rg = 2GM/c2 — так называемый «гравитационный радиус», а сфера радиуса rg называется «сферой Шварцшильда». Заметим, что для Солнца rg = 2,96 км, а для Земли rg = 0,44 см, r1 — радиус звезды в момент t1, причем в формуле (24.1) предполагается, что (r1 - rg) rg. Напомним, что радиусы нейтронных звезд только в несколько раз больше их гравитационного радиуса. Применение решения К. Шварцшильда к проблеме коллапса невращающейся звезды вполне законно, так как мы можем рассматривать движение каждой точки на поверхности коллапсирующей звезды как свободное падение в сферически-симметричном поле тяготения. Из формулы (27), таким образом, следует, что с точки зрения внешнего наблюдателя при приближении r к rg скорость сжатия асимптотически замедлится практически до нуля. Внешний наблюдатель никогда не зафиксирует переход сжимающейся звезды под сферу Шварцшильда — ведь по его часам для этого сжимающейся звезде потребуется бесконечно большое время. А между тем воображаемый наблюдатель, находящийся на сжимающейся звезде и коллапсирующий вместе с ней, никаких особенностей, связанных с пересечением сферы Шварцшильда, не заметит. По его часам пройдут считанные секунды, в течение которых звезда и он сам сожмутся в точку. Здесь эффекты общей теории относительности проявляют себя самым разительным образом. Грубо говоря, смысл этих эффектов состоит в том, что в очень сильном гравитационном поле скорость течения всех процессов (по часам внешнего наблюдателя) крайне замедляется.
С точки зрения внешнего наблюдателя в процессе гравитационного коллапса светимость звезды при приближении ее радиуса к гравитационному будет катастрофически быстро падать. Это падение светимости обусловлено совместным действием гравитационного красного смещения, эффекта Доплера и аберрации света. На основе теории К. Шварцшильда можно получить следующее выражение для зависимости светимости коллапсирующей звезды от времени:
(24.2)В пределе при t светимость L 0, так же как и частота излучения. Для наблюдателя же, связанного с коллапсирующей звездой, светимость (по его часам!) может даже расти. С точки зрения же внешнего наблюдателя коллапсирующая звезда практически перестанет излучать и прекратит свое сжатие у r rg за время (по его часам!) rg/c, т. е. 10-5 с. Сказанное относится не только к фотонному, но и к нейтринному излучению коллапсирующей звезды. Как показал В. Л. Гинзбург, магнитное поле коллапсирующей звезды при r rg также как бы исчезает для внешнего наблюдателя.
Таким образом, для внешнего наблюдателя за очень короткое время 10-5 с коллапсирующая звезда как бы «пропадает». Такой объект получил весьма образное название «черной дыры». Никакое излучение — фотонное, нейтринное или корпускулярное,— из такой «дыры» уже не выходит. Единственное, что остается от этой звезды для внешнего мира,— это ее гравитационное поле, определяемое массой. Если, например, в двойной системе одна из компонент сколлапсирует, то это ничуть не отразится на движении второй компоненты.
Учет вращения звезды осложняет картину гравитационного коллапса, но качественно ее не меняет. Следует, однако, подчеркнуть, что никакое вращение не может предотвратить коллапс. Конечной стадией эволюции достаточно массивных объектов после исчерпания запасов ядерной энергии должен быть коллапс.
Точное решение задачи общей теории относительности для сферически-симметричного вращающегося гравитирующего тела было дано сравнительно недавно, в 1963 г., Керром. Это решение отличается большим изяществом и открывает возможность для довольно любопытных теоретических умозаключений. Применение этого решения к проблеме коллапса вращающейся звезды имеет своим следствием только некоторое отличие характеристик гравитационного поля вблизи сколлапсировавшей звезды от шварцшильдовского решения. Итак, от сколлапсировавшей звезды остаются для внешнего наблюдателя только ее характеристики: 1) масса M, 2) вращательный момент K. Характерное «стирание» индивидуальных характеристик коллапсирующих звезд при их асимптотическом приближении к гравитационному радиусу известный американский физик Уиллер пояснил таким афоризмом: «черные дыры не имеют волос...»
В последние годы теоретики довольно много занимались абстрактными математическими свойствами черных дыр. Например, исследовались возможности столкновения черных дыр с обыкновенными звездами и между собой. Оказывается, что после таких столкновений могут образовываться новые черные дыры, причем в течение короткого времени rg/c 10-5 с они будут находиться в сильно возмущенном состоянии, характеризующимся мощным излучением гравитационных волн (см. ниже), после чего они опять «успокаиваются». Самым общим образом было доказано несколько важных математических теорем о черных дырах. Сформулируем две из них: а) образовавшаяся каким-либо способом черная дыра никогда не может быть разрушена; б) одна черная дыра никогда не может разделиться на две черные дыры, хотя обратный процесс возможен.
Недавно, однако, английский теоретик Хоукинг показал, что, строго говоря, теорема а) неверна: образовавшиеся каким-либо образом черные дыры очень малой массы с течением времени как бы «испаряются». Остановимся на этом любопытном феномене, казалось бы, разрушающем все наши представления о черных дырах, более подробно. Согласно взглядам современной физики, вакуум представляет собой отнюдь не абсолютную пустоту, в которой движутся различные материальные тела. На самом деле вакуум — как бы огромный резервуар, наполненный всевозможными, так называемыми «виртуальными» частицами и античастицами.
При отсутствии внешних воздействий (например, полей) эти «виртуальные» частицы не «материализуются», их как бы нет. Однако достаточно сильные или переменные поля (электрическое, гравитационное) вызывают превращения виртуальных частиц в материальные, которые вполне могут быть наблюдаемы.
Хоукинг обратил внимание на то, что коллапсирующую звезду нельзя считать абсолютно застывшей. Характерное время изменения всех процессов, очевидно, равно гравитационному радиусу, поделенному на скорость света, т. е.
(24.3)- Предыдущая
- 113/117
- Следующая
