Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович - Страница 98
Из наблюдаемого увеличения периодов пульсаров со временем можно получить , а следовательно, и = .
Скорость уменьшения кинетической энергии вращения пульсара
(22.1)Первая задача физики пульсаров — понять, почему вращающиеся нейтронные звезды тормозятся, тем самым непрерывно выделяя энергию. Простейшее объяснение этого явления сводится к тому, что нейтронные звезды сильно намагничены. Тогда вращающаяся нейтронная звезда, находящаяся в вакууме, будет излучать магнитно-дипольное излучение, частота которого равна частоте вращения, а мощность определяется формулой
(22.2)где — угол между магнитной осью и осью вращения, H — напряженность магнитного поля на поверхности пульсара. Например, пульсар в Крабовидной туманности NP 0531, для которого = 200 с-1, = 2,4 10-9, теряет энергию = 3 1038 эрг/с. Если причина торможения — магнитно-дипольное излучение, то, приравнивая = Lm, найдем, что H 3 1012 Э. Другой причиной торможения этого пульсара может быть излучение им гравитационных волн (см. § 24). Для этого надо только предположить, что фигура нейтронной звезды слегка асимметрична, т. е. представляет собой трехосный эллипсоид. В этом случае мощность гравитационного излучения вращающейся нейтронной звезды определяется формулой
(22.3)где I — момент инерции, а e — эксцентриситет экваториального эллипса нейтронной звезды. Частота гравитационных волн, как оказывается, равна удвоенной частоте вращения.
Как видно из этой формулы, зависимость мощности гравитационного излучения от угловой скорости значительно более сильная, чем в случае магнитно-дипольного излучения. Поэтому заметный эффект может быть только у очень быстро вращающихся пульсаров, например, у NP 0531 (см. об этом в § 24). В том случае, когда центр магнитного диполя не совпадает с центром нейтронной звезды, излучение будет асимметричным. В этом случае звезда приобретет импульс отдачи в направлении от вращения. Не этим ли объясняются высокие скорости пульсаров?
Если бы торможение вращающихся нейтронных звезд было обусловлено их магнитно-дипольным излучением, то, как можно показать, 3. Между тем статистический анализ большого количества пульсаров с известными и дает эмпирическую зависимость 3,4. У пульсара NP 0531, для которого и наблюдались особенно тщательно, эмпирическая зависимость имеет вид 2,7. Это означает, что рассмотренная выше простая модель торможения намагниченных вращающихся нейтронных звезд недостаточна. И прежде всего предположение, что нейтронная звезда находится в вакууме, заведомо не выполняется. Тем самым задача становится значительно более сложной.
Вращающийся намагниченный проводник создает в окружающем пространстве электрическое поле. Составляющая этого поля, перпендикулярная к поверхности проводника, будет стремиться «вырвать» из него электроны и ионы. В реальных условиях нейтронной звезды напряженность электрического поля достигает огромных значений. К тому же температура поверхности нейтронной звезды достаточно высока. По этим причинам пространство вокруг нейтронной звезды заполнится большим количеством заряженных частиц, которые, двигаясь по силовым линиям магнитного поля, будут вместе с нейтронной звездой с той же угловой скоростью вращаться вокруг ее оси. Такое «твердотельное» вращение должно иметь место вплоть до некоторого критического расстояния от оси вращения, т. е. внутри цилиндра. Радиус этого цилиндра R1 = c/ определяется условием, что на его поверхности скорость твердотельного вращения равна скорости света[ 54 ]. Однако если плотность плазмы вокруг нейтронной звезды достаточно велика, область ее твердотельного вращения будет меньше и определится условием равенства плотностей магнитной энергии и кинетической энергии плазмы.
Итак, вращающаяся намагниченная нейтронная звезда окружает себя довольно плотной магнитосферой, в электродинамическом смысле являющейся ее продолжением. Как показывают расчеты, электрические заряды в магнитосфере нейтронной звезды должны быть разделены, т. е. там должны быть значительные объемные заряды. Плотность зарядов определяется формулой
(22.4)Например, на поверхности пульсара NP 0531, где H 3 1012 Э, a = 200 с-1, n-- n+ 1013 см-3, т. е. довольно значительная. Конечно, полная плотность плазмы около поверхности этого пульсара должна быть гораздо больше.
Рис. 22.3: RcЗаряженные частицы, предварительно ускорившись электрическим полем до релятивистских энергий, будут «вытекать» из магнитосферы на бесконечность по «открытым» силовым линиям, причем заряды разных знаков будут вытекать по разным линиям. На рис. 22.3 приведена схема магнитосферы пульсара для простейшего случая, когда магнитная ось совпадает с осью вращения. В случае, когда оси не совпадают, качественно структура магнитосферы остается такой же.
- Предыдущая
- 98/117
- Следующая
