Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Наука логики - Дебольский Г. Н - Страница 64
суммы, а потому, что не принимается во внимание член, содержащий качественное определение, которое здесь важнее всего.
В этом примере качественный смысл есть то, от чего ставится в зависимость способ действия. В связи с этим мы можем тотчас же привести общее утверждение, что все затруднение с принципом было бы устранено, если бы вместо формализма, исходя из которого определение дифференциала усматривают лишь в задаче, дающей ему это имя, [т. е.] в отличии вообще функции от ее изменения после того, как ее переменная величина получила некоторое приращение, - если бы вместо этого формализма было указано качественное значение принципа и действие было поставлено в зависимость от этого качественного значения. В этом смысле дифференциал от х полностью исчерпан первым членом ряда, получающегося путем разложения (х + dxY). Таким образом, остальные члены не принимаются во внимание не из-за их относительной малости; здесь не предполагается никакой такой неточности, погрешности или ошибки, которая бы исправлялась и устранялась другой ошибкой, - взгляд, исходя главным образом из которого Карно обосновывает правомерность обычного метода исчисления бесконечно малых. Так как дело идет не о сумме, а об отношении, то дифференциал полностью находят посредством. первого члена; там же, где есть нужда в новых членах, в дифференциалах высших разрядов, их нахождение (Bestimmung) состоит не в продолжении ряда как суммы, а в повторении одного и того же отношения, единственно которое имеют в виду и которое,
стало быть, полностью имеется уже в первом члене. Потребность в форме некоторого ряда, в суммировании этого ряда и все, что связано с этим, должны в таком случае быть совершенно отделены от указанного интереса отношения.
Разъяснения, даваемые Карно относительно метода бесконечных величин, это наиболее ясное и четкое изложение того, что нам встретилось в указанных выше представлениях. Но при переходе к самим действиям у него в той или иной мере появляются обычные представления о бесконечной малости опускаемых членов по сравнению с другими. Он оправдывает метод не столько самой природой вещей, сколько тем фактом, что результаты оказываются правильными, и полезностью введения неполных уравнений, как он их называет (т. е. таких, в которых осуществляют такое арифметически неправильное отбрасывание), для упрощения и сокращения исчисления.
Лагранж, как известно, вновь принял первоначальный метод Ньютона, метод рядов, чтобы избавиться от трудностей, связанных с представлением о бесконечно малом, равно как и с методом первых и последних отношений и пределов. Относительно его исчисления функций, прочие преимущества которого в отношении точности, абстрактности и всеобщности достаточно известны, мы должны отметить - поскольку это касается нашей темы - лишь то, что оно исходит из основного положения, что разность, не превращаясь в нуль, может быть принята столь малой, что каждый член ряда превосходит по величине сумму всех следующих за ним членов. - При этом методе также начинают с категории приращения и разности функций, переменная величина которой получает приращение, что и вызывает появление докучливого ряда; равно как в дальнейшем члены ряда, которые должны быть опущены, принимаются в соображение, лишь поскольку они составляют некоторую сумму, и основание, почему они отбрасываются, усматривается в относительности их определенного количества. Отбрасывание, следовательно, и здесь не сводится вообще к точке зрения, встречающейся, с одной стороны, в отдельных видах применения, в которых, как мы упомянули раньше, члены ряда должны иметь определенное качественное значение и часть из них оставляется без внимания не потому, что они незначительны по величине, а потому, что они незначительны по качеству; с другой же стороны, отбрасывание зависит от той существенной точки зрения, которая определенно выступает у Лагранжа относительно так называемых дифференциальных коэффициентов лишь в так называемом применении дифференциального исчисления, что мы подробнее разъясним в следующем примечании.
Качественный характер вообще, свойственный (как мы здесь доказали относительно обсуждаемой нами формы величины) тому, что при этом называется бесконечно малым, обнаруживается непосредственнее всего в категории предела отношения, которая приведена выше и проведение которой в дифференциальном исчислении было названо особого рода методом. Из рассуждений Лагранжа об этом методе, что ему недостает легкости в применении и что термин предел не вызывает определенной идеи, мы остановимся на втором и рассмотрим более подробно его аналитическое значение. Именно в представлении о пределе и содержится указанная выше истинная категория качественного определения отношения между переменными величинами; ибо формы их, которые появляются, dx и dy, должны быть взяты dy dx здесь просто лишь как моменты - и само .следует рассматривать как единый неделимый знак. Что для механизма исчисления, особенно в его применении, утрачивается преимущество, которое он извлекает из того обстоятельства, что члены дифференциального коэффициента обособляются друг от друга, - это следует здесь оставить без внимания. Этот предел должен быть теперь пределом данной функции; он должен указать некоторое значение в связи с ней, определяемое способом выведения. Но с одной лишь категорией предела мы не подвинулись бы дальше, чем с тем, о чем дело шло в этом примечании, имеющем целью показать, что бесконечно малое, встречающееся в дифференциальном исчислении как dx и dy, имеет не только отрицательный, никчемный смысл некоторой неконечной, не данной величины, как это имеет место, [например], когда говорят: "бесконечное множество", "и т. д. до бесконечности" и т. п., а определенный смысл качественной определенности количественного, момента отношения, как такового. Однако эта категория, взятая в таком смысле, еще не имеет отношения к данной функции, еще не влияет сама по себе на рассмотрение этой функции и не приводит к такому пользованию указанным определением, которое должно было бы иметь место в последней; таким образом, и представление о пределе, ограниченное такой доказанной относительно него определенностью, также ни к чему не привело бы. Но термин предел уже сам по себе подразумевает, что это предел чего-то, т. е. выражает некоторое значение, заключающееся в функции переменной величины; и мы должны посмотреть, каково это конкретное оперирование им.
Он должен быть пределом отношения друг к другу двух приращений, на которые, по сделанному допущению, увеличиваются две переменные величины, соединенные в одном уравнении, из которых одна рассматривается как функция другой;
приращение берется здесь вообще неопределенным, и постольку бесконечно малым еще не пользуются. Но путь, которым отыскивается этот предел, приводит прежде всего к тем же непоследовательностям, которые имеются в других методах. Этот путь именно таков. Если у - fx, то при переходе у в у + k fx должно переходить в fx + ph + ah2 + rh3 и т. д. Следовательно, k = ph + gh2 и т. д. и р + qh + rh2 и т. д. Если теперь k и h исчезают, то исчезает и второй член ряда кроме р, которое и есть предел отношения этих двух приращений. Отсюда видно, что А как определенное
О, но что вследствие этого в то же время h
количество полагается еще не равно, а остается некоторым отношением. И вот представление о пределе должно принести ту пользу, что оно устранит заключающуюся здесь непоследовательность; р должно в то же время быть не действительным отношением, которое было бы = ",
а лишь тем определенным значением, к которому отношение может приближаться бесконечно, [т. е. ] так, чтобы разность могла стать меньше всякой данной разности. Более определенный смысл приближения относительно того, что, собственно, должно сближаться между собой, будет рассмотрен ниже. - Но что количественное различие, определяемое не только как могущее, но и как долженствующее быть меньше всякой данной величины, уже не количественное различие, это само собой ясно; это так же очевидно, как что-то вообще может быть очевидным в математике; но этим мы не пошли дальше dy/dx=0/0. Если же dy/dx=p, т.е. принимается за определенное количественное отношение, как это и есть на самом деле, то, наоборот, возникает трудность для предположения, что h=0, предположения - единственно в основании k которого и получается k/n=p. Если же согласиться, что k/n=0 и в самом деле, раз h = 0, то само собой k также становится - 0, ибо приращение k к у имеет место лишь при условии, что приращение составляет h, - то надо было бы спросить, что же такое р, которое есть совершенно определенное количественное значение. На этот вопрос сразу же само собой получается простой, ясный ответ, что оно коэффициент, и нам указывают, на основании какого выведения он возникает, некоторым определенным образом выведенная первая производная функция первоначальной функции. Если довольствоваться этим ответом, как и в самом деле Лагранж по существу дела удовольствовался им, то общая часть науки дифференциального исчисления и непосредственно сама форма его, которая называется теорией пределов, освободилась бы от приращений, а затем и от их бесконечной или какой угодно малости, от трудности, состоящей в том, что кроме первого члена или, вернее, лишь коэффициента первого члена, все остальные члены ряда, которые неизбежно появляются благодаря введению этих приращений, вновь устраняются; но помимо этого она очистилась бы также и от всего того, что дальше связано с этим, от формальных категорий прежде всего бесконечного, от бесконечного приближения, а затем и от дальнейших, здесь столь же пустых категорий непрерывной величины и всех еще других, которые считают нужным ввести, таких как стремление, становление, повод к изменению. Но в таком случае требовалось бы показать, какое еще значение и ценность, т. е. какую связь и какое употребление для дальнейших математических целей имеет р помимо того ясного определения, для теории совершенно достаточного, что оно не что иное, как полученная путем разложения бинома производная функция; об этом будет сказано во втором примечании. -Здесь же мы прежде всего разберем ту путаницу, которую приведенное выше столь обычное в изложениях пользование представлением о приближении внесло в понимание собственной, качественной определенности того отношения, о котором прежде всего шла речь.
- Предыдущая
- 64/221
- Следующая
