Вы читаете книгу
![Читать книгу Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович на сайте book-online.info Беллюстин Всеволод Константинович - Как постепенно дошли люди до настоящей арифметики [без таблиц]](https://web-literatura.ru/pic/1/2/2/3/3/7/w177/kniga-kak-postepenno-doshli-lyudi-do-nastoyaschey-arifmetiki-bez-tablits.jpg)
Беллюстин Всеволод Константинович
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович - Страница 24
4) Апіанъ въ XVI ст. даетъ такое же расположеніе, какое дали бы и мы, но только онъ подписываетъ числа не разрядъ подъ разрядомъ, а просто крайнюю цифру подъ крайней. Разд?лить 97535376 на 9876, получится 9876. Пишется д?лимое, подъ нимъ д?литель, а частное сбоку. a b c
9 7 5 3 5 3 7 6 ( 9 8 7 6
9 8 7 6
8 8 8 8 4
8 6 5 1 3 a
7 9 0 0 8
7 5 0 5 7 b
6 9 1 3 2
5 9 2 5 6 c
5 9 2 5 6
5) Тарталья, изобр?тательный итальянскій математикъ XVI в., не только учившій по старин?, но и отъ себя предлагавшій много оригинальныхъ и удобныхъ пріемовъ, для большей ясности расчленяетъ д?йствіе на рядъ отд?льныхъ вычисленій, смотря по тому, сколько цифръ въ частномъ.
Вотъ, какъ онъ выполняетъ д?леніе 2596860019 на 38784.
Частное 67019, остатокъ 7807. При этомъ Тарталья говоритъ, что хорошо бы передъ д?леніемъ заготовлять произведенія д?лителя на вс? однозначныя числа; тогда видн?е было бъ, какою цифрою задаваться въ частномъ, да и не нужно составлять отд?льно произведеній д?лителя на цифры частнаго, такъ-какъ они ужъ есть, и останется прямо вычитать.
6) Клавіусъ въ XVII ст. вводитъ нашъ знакъ д?ленія (при помощи угла), но числа при д?леніи располагаетъ не по нашему. Прим?ръ: 1902942 : 2978=639.
7) Вендлеръ, н?мецкій педагогъ XVII в., употребляетъ почти нашъ пріемъ, съ тою только разницей, что д?литель и частное у него ставятся по об?имъ сторонамъ д?лимаго.
Кром? того, цифры д?лимаго не сносятся, а остаются на своемъ прежнемъ м?ст? вверху.
8) Пешекъ въ XVIII ст. вычисляетъ такъ же, какъ и Вендлеръ. Пешекъ даетъ нашему способу названіе французскаго.
9) Баргь въ XVIII ст. пишетъ д?лителя подъ д?лимымъ при всякомъ частномъ д?леніи, сл?д. столько разъ, сколько разрядовъ въ частномъ. 66734 : 325= 205 109/325
10) Въ русскихъ математическихъ рукописяхъ XVII стол?тія встр?чаются, какъ и сл?довало ожидать, т? же самые пріемы, какіе выработала Западная Европа. Они перешли къ намъ черезъ Польшу, такъ какъ именно польская ученость давала пищу русской образованности XVII в?ка. Чаще всего въ это время встр?чается способъ Апіана (см. выше, 4). У Магницкаго, стр. К а оборот? представлено д?леніе въ такомъ вид?.
Зд?сь д?лимое 5175 пом?щено во второй строк?, частное справа, д?литель 15 переписывается трижды (въ третьей и пятой строкахъ), четвертая и пятая строка отведены частнымъ произведеніямъ, а верхняя—остатку отъ вычитанія. Изъ этого видно, что цифры расположены довольно несистематично и неудобно, такъ что сбиться въ нихъ очень легко. Но, по правилу, «изъ двухъ золъ выбирай менынее», Магницкій очень доволенъ этимъ способомъ и одобряетъ его въ сл?дующихъ выраженіяхъ: «Мнози убо д?лятъ перечни сицевымъ образомъ: егда д?лителемъ емлютъ, изъ числъ д?лимаго, и написавши за чертою, умножаютъ имъ весь д?литель и, подписавши вычитаніемъ, вычитаютъ изъ д?лимаго. И намъ видится, сицевымъ образомъ есть удобн?йше, но т?мъ иже слаб?йшеее разум?ніе и тщаніе имутъ: зане не толикаго есть домышленія, и остроты». Дал?е у Магницкаго идетъ способъ, цохожій на Барта (см. выше, 9), и способъ Вендлера (выше, 7). Вліяніе Вендлера вполн? зам?тно въ ари?метик? Василія Адодурова (1740 г), Румовскаго (1760 г.), Кузнецова (1760 г.). У Загорскаго (1806 г.) является нашъ нормальный способъ во всей чистот?.
Австрійскій способъ д?ленія.
Подъ именемъ австрійскаго способа разум?ется такой, который хотя и похожъ на нашъ нормальный, но отличается отъ него большімъ прим?неніемъ устнаго счета. Австрійскій способъ можно считать шагомъ впередъ сравнительно съ нашимъ способом, въ немъ меньше шісьма и самое д?йствіе совершается всл?дствіе этого гораздо быстр?е, правда, есть въ немъ и неудобство: именно, челов?къ, мало-мальски невнимательный, легко въ немъ сд?лаетъ ошибку и собьется. Для прим?ра возьмемъ 167585 : 365. Первая цифра частнаго будетъ 4; составляемъ произведеніе 365 на 4, начиная съ низшихъ разрядовъ, но не подписываемъ этого произведенія подъ д?лимымъ, а вычитаемъ каждый разрядъ его, какъ только онъ получится, и пишемъ прямо остатокъ: 4?5=20, сл?д. въ остатк? 5; 4?6=24, да 2, 26, 6 изъ 7=1, сл?д. въ остатк? 1; дал?е 3?4=12 да 2—14, 14 изъ 16 даетъ въ остатк? 2; всего получится посл? вычитанія 215; сносимъ сл?дующую цифру 3 и д?лимъ новое число 2153 такъ же, какъ и предыдущее, т.-е. одновременно производимъ умноженіе и вычитаніе.
Австрійская метода стала выдвигаться на первый планъ сравнительно недавно, съ средины XIX в?ка, но зачатки ея простираются вплоть до XVII в?ка; еще Вендлеръ даетъ образецъ такого сокращеннаго д?ленія.
Кегель въ XVII ст. даетъ бол?е грубую форму этого способа, такъ какъ онъ начинаетъ умноженіе съ высшихъ разрядовъ, а не съ низшихъ и ему приходится лишній разъ изм?нять цифры. Вотъ какъ у него идетъ д?леніе 135513 на 21:
Наконецъ, Маурахеръ (XVIII в.) пользуется такимъ расположеніемъ вычисленія:
При этомъ частное 12345 пом?щается внизу, д?литель 8 сл?ва, а д?лимое 98760 прав?е д?лителя.
Испанскій способъ д?ленія.
Это самая употребительная, самая распространенная форма д?ленія. Теперь ея уже н?тъ въ учебникахъ и объ ней не вспоминаютъ, но почти въ теченіе тысячи л?тъ, съ IX в?ка до XIX, она являлась общеизв?стной и популярной формой. Начало ей положили арабы; черезъ Испанію она была принесена въ Западную Европу и потому получила названіе «испанскаго» способа. Участь его можно сравнить съ той, которую пришлось испытать обученію грамот? по методу: «буки азъ ба». Теперь этотъ методъ отжилъ свой в?къ и скоро о немъ, нав?рное, забудутъ, а въ свое время онъ пользовался общепризнаннымъ авторитетомъ и на немъ воспитывался длинный рядъ покол?ній: наши отцы, д?ды и прад?ды, и д?ды нашихъ прад?довъ. Тоже случилось съ испанскимъ д?леніемъ. Сколько надъ нимъ старались, сколько хлопотали надъ его усовершенствованіемъ, а сейчасъ его забыли. Правду сказать, горевать объ этомъ не приходится, потому что—то было д?леніе длинное, сбивчивое и обильное всякими недоразум?ніями. Надо думать, что корень его скрывается въ индусской математик?, судя по тому, что вычислять подобнымъ образомъ очень удобно было на песк?, какъ то было принято у индусовъ. Когда же этотъ способъ сталъ прим?няться на бумаг?, то получилось н?что несообразное по основной иде?: цифры, которыя сл?довало стирать, оставались нетронутыми (иногда зачеркивались), нагромождались другъ на друга и давали массу лишняго и безполезнаго письма. Приведемъ прим?ры.
1) Прим?ръ Альхваризми, араба IX стол?тія. Требуется 46468 разд?лить на 324, частное 143.
Какъ видно, д?лимое въ средин?; подъ нимъ пом?щается д?литель и при томъ переписывается столько разъ, сколько цифръ въ частномъ; такое передвиженіе осталось, конечно, отъ вычисленій на песк?, когда такъ легко было стирать цифры и писать ихъ еще разъ въ бол?е удобномъ положеніи; первая цифра частнаго будетъ 1, первый остатокъ 140 пишется надъ частнымъ; теперь надо д?лить 1406 на 324, въ частномъ будетъ 4; умноженіе 324 на 4 идетъ съ высшихъ разрядовъ и одновременно же происходитъ вычитаніе. Вотъ гд?, между прочимъ, основаніе для австрійскаго способа, разобраннаго нами выше. Такъ какъ 3?4=12, то вычитаемъ 12 изъ 14-ти и иолучаемъ 2, которое и пишемъ надъ 4-мя; дал?е 2?4=8, 8 изъ 10=2, сл?д. надъ нулемъ надо пом?стить 2, а прежнюю цифру десятковъ 2 надо зам?нить новой 1, написавши эту 1 надъ двумя. Такъ д?йствіе идетъ до самаго конца, т.-е. умноженіе производится съ высшихъ разрядовъ и сопровождается вычитаніемъ, при чемъ изм?ненныя цифры переписываются выше.
- Предыдущая
- 24/48
- Следующая