Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - Страница 130
Мы займемся здесь поисками натуральных чисел с различными свойствами. Чтобы мы могли говорить о длине поиска, нам необходимо определить некие основные шаги, из которых состоит каждый поиск. Тогда мы сможем измерять длину поиска количеством шагов. Вот некоторые шаги, которые можно считать основными:
сложение двух натуральных чисел;
умножение двух натуральных чисел;
определение равенства двух чисел;
определение того, какое из двух чисел больше.
Петли и верхние границыЕсли мы попытаемся сформулировать некий тест, — например, на простоту чисел, — в терминах таких шагов, мы вскоре увидим, что нам необходимо включить в него управляющую структуру — описание того, в каком порядке надо действовать: когда надо отойти назад и попытаться сделать что-то снова, или пропустить несколько шагов, или остановиться и т. п.
Любой алгоритм — описание того, как выполнить определенное задание — обыкновенно состоит из смеси (1) набора конкретных операций и (2) контрольных высказываний. Таким образом, разрабатывая наш язык для описания предсказуемо длинных вычислений, мы должны включить в него также основные контрольные структуры. Отличительное свойство Блупа — это ограниченное количество его контрольных структур. В нем нельзя совершать произвольные шаги или повторять группы шагов до бесконечности. Практически единственная контрольная структура Блупа — это ограниченные петли: набор команд, которые можно повторять снова и снова, но лишь ограниченное число раз; это число называется верхней границей, или потолком петли. Если потолок данной петли 300, то она может быть выполнена 0,7 или 300 раз — но не 301.
Программист не должен вводить в программу точной величины всех верхних границ; в действительности, он может и не знать этого заранее. Вместо этого, каждый потолок может быть вычислен до того, как программа начинает выполнять соответствующую петлю. Например, если вы собираетесь вычислить величину 2 3 n, у вас будут две петли. Сначала вы подсчитаете 3 n; для этого вам придется применить умножение n раз. Затем вы возьмете полученное число и возведете два в эту степень. Таким образом, верхняя граница второй петли — результат вычислений, произведенных вами в первой петле.
В программе Блуп это выражается следующим образом:
ОПРЕДЕЛИТЬ ПРОЦЕДУРУ «ДВА-В-СТЕПЕНИ-ТРИ-В-СТЕПЕНИ»[N]:
БЛОК 0:НАЧАЛО
ЯЧЕЙКА(О)
- Предыдущая
- 130/233
- Следующая
