Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - Страница 132
ФЕРМА? [N] == ДА, если А N + В N = С N верно для неких положительных величин А, В, и С; в противном случае, НЕТ.
(например, ФЕРМА? [2] = ДА)
ЧЕРЕПАШЬЯ ПАРА? [M, N] = ДА если M и M + N простые числа; в противном случае, НЕТ.
(например, ЧЕРЕПАШЬЯ ПАРА? [5, 1742] = ДА
ЧЕРЕПАШЬЯ ПАРА? [5, 100] = НЕТ)
ЧЕРЕПАХА [N] = ДА, если N - разность двух простых чисел, в противном случае, НЕТ.
(например, ЧЕРЕПАХА [1742] = ДА,
ЧЕРЕПАХА [7] = НЕТ)
ХОРОШО СФОРМИРОВАННАЯ MIU? [N] = ДА, если N, в качестве строчки MIU, хорошо сформировано; в противном случае, НЕТ.
(например, ХОРОШО СФОРМИРОВАННАЯ MIU? [310] = ДА,
ХОРОШО СФОРМИРОВАННАЯ MIU? [415] = НЕТ)
ПАРА ДОКАЗАТЕЛЬСТВА MIU? [М, N] = ДА. если М, рассматриваемое как последовательность строчек MIU, является деривацией N, рассматриваемого как строчка системы MIU; в противном случае, НЕТ.
(например, ПАРА ДОКАЗАТЕЛЬСТВА MIU? [3131131111301, 301] = ДА,
ПАРА ДОКАЗАТЕЛЬСТВА MIU? [311130, 30] = НЕТ)
ТЕОРЕМА MIU? [N]= ДА, если N, в качестве строчки MIU, является теоремой; в противном случае, НЕТ.
(например, ТЕОРЕМА MIU? [311] = ДА,
ТЕОРЕМА MIU? [30]= НЕТ,
ТЕОРЕМА MIU? [701]= НЕТ)
ТЕОРЕМА ТТЧ? [N]= ДА, если N, в качестве строчки ТТЧ, является теоремой; в противном случае, НЕТ.
(например, ТЕОРЕМА ТТЧ? [666111666] = ДА,
ТЕОРЕМА ТТЧ?[123666111666] = НЕТ,
ТЕОРЕМА ТТЧ? [7014] = НЕТ)
ЛОЖНО? [N)= ДА, если N, в качестве строчки ТТЧ, представляет собой ложное утверждение теории чисел; в противном случае, НЕТ.
(например, ЛОЖНО? [666111666]= НЕТ,
ЛОЖНО? [223666111666]= ДА,
ЛОЖНО? [7014]= НЕТ)
Последние семь примеров особенно важны для наших будущих метаматематических исследований, поэтому они заслуживают самого пристального внимания.
Выразимость и представимостьПрежде, чем рассмотреть еще несколько интересных вопросов, касающихся Блупа, и перейти к его родственнику, Флупу, давайте вернемся к тому, зачем нам вообще понадобился Блуп, и к его связи с ТТЧ. Ранее я сказал, что критическая масса, необходимая формальной системе для приложения метода Гёделя, достигается тогда, когда в этой системе представимы все примитивно-рекурсивные понятия. Что это означает? Прежде всего, мы должны различать между понятиями представимости и выразимости. Выразить предикат означает просто перевести его с русского языка на язык формальной системы. Это не имеет ничего общего с теоремностью. С другой стороны, если предикат представлен, это означает, что
(1) Все истинные примеры этого предиката — теоремы;
(2) Все ложные примеры этого предиката — не теоремы.
Под «примером» я имею в виду строчку, которая получается при замене всех свободных переменных на числовые величины. Например, предикат m + n = k представлен в системе рr, поскольку каждый истинный пример этого предиката — теорема, и каждый ложный — не теорема. Таким образом, каждый частный случай сложения, истинный или ложный, переводится в разрешимую строчку системы рr. Однако система pr не способна выразить — и меньше того, представить — никакие другие свойства натуральных чисел. Она была бы слабеньким кандидатом в соревновании систем, способных символизировать теорию чисел.
ТТЧ, со своей стороны, способна выразить практически любой теоретико-численный предикат; например, легко написать строчку ТТЧ, выражающую предикат «b имеет свойство Черепахи». Таким образом, в смысле выразительной мощи ТТЧ — это именно то, что нам требуется.
Однако вопрос «Какие свойства представлены в ТТЧ?» эквивалентен вопросу «Насколько мощной аксиоматической системой является ТТЧ?» Можно ли сказать, что в ней представлены все возможные предикаты? Если это так, то ТТЧ может ответить на любой вопрос теории чисел — то есть она полна.
Примитивно-рекурсивные предикаты представлены в ТТЧХотя вскоре выяснится, что ее полнота не более чем химера, ТТЧ полна, по крайней мере, в отношении примитивно-рекурсивных предикатов. Иными словами, любое высказывание теории чисел, чья истинность или ложность могут быть разрешены компьютером за некое предсказуемое время, разрешимо также в ТТЧ. Иными словами,
Если на Блупе можно написать тест для некого свойства натуральных чисел, то это свойство представлено в ТТЧ.
Есть ли функции, не являющиеся примитивно-рекурсивными?Свойства чисел, которые можно обнаружить с помощью тестов Блупа, широко варьируются: это простота чисел, их совершенность, наличие у них свойства Гольдбаха, то, является ли число степенью двух и т. д. Логично было бы спросить, всякое ли свойство чисел может быть обнаружено соответствующей программой Блупа. Нас не должно смущать, что мы пока не можем проверить число на его интересность. Это может означать лишь то, что у нас не хватает знаний; возможно, если как следует поискать, нам удалось бы найти верхнюю границу соответствующего цикла. Тогда мы могли бы тут же написать тест Блупа. То же самое можно сказать и о свойстве Черепахи.
Следовательно, вопрос в том, можно ли найти потолок для любого цикла — или же теории натуральных чисел присуща некая беспорядочность, мешающая нам предсказать заранее длину некоторых вычислений? Удивительно то, что верно второе, и сейчас мы увидим, почему. Наверное, именно такой тип рассуждений свел с ума Пифагора, впервые доказавшего иррациональность корня из двух. В нашем доказательстве мы будем использовать знаменитый диагональный метод, изобретенный основателем теории множеств Георгом Кантором.
Клуб Б, номера-индексы и Белые ПрограммыДля начала представим себе забавное понятие: некий клуб, членами которого являются все возможные программы Блупа. Нет нужды говорить, что число членов этого клуба (назовем его клубом Б) бесконечно. Рассмотрим часть этого клуба, так сказать, подклуб, полученный после трех последовательных фильтрующих операций. Первый фильтр оставит нам только программы без вызова. Из этого подклуба мы уберем все тесты, оставив только функции. (Кстати, последняя процедура программ без вызова определяет, является ли программа тестом или функцией.) Третий фильтр удержит только функции с единственным входным параметром. Что у нас остается?
Полный набор всех безвызовных программ Блупа, вычисляющих функции с единственным входным параметром.
Назовем такие специальные функции Белыми Программами.
Следующим шагом будет установление для каждой Белой Программы определенного номера-индекса. Как это можно сделать? Легче всего составить список Белых Программ согласно их длине: самая короткая возможная программа будет #1, вторая по длине — #2 и т. д. Разумеется, некоторые программы окажутся одинаковой длины — в этом случае мы будем пользоваться также алфавитным порядком. Термин «алфавитный порядок» здесь употребляется в широком смысле: алфавит включает как кириллические, так и латинские буквы, а также все специальные символы Блупа в неком произвольно установленном порядке, как, например, следующий:
А Б В Г Д Е Ж З И Й К Л М Н О П
Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Э Ь Ю Я
A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z + Х
1 0 2 3 4 5 6 7 8 9
- Предыдущая
- 132/233
- Следующая
