Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер - Страница 97
Рациональные и иррациональные числа, как положительные, так и отрицательные, включая ноль, называются действительными числами. Чтобы вообразить действительные числа, мы можем представить себе, что каждое число соответствует точке прямой, где самые большие числа находятся справа. Действительные числа, подобно точкам на прямой, простираются от минус бесконечности слева до плюс бесконечности справа и включают все возможные числа — целые, рациональные и иррациональные. Это соответствие действительных чисел с точками прямой явилась решающим шагом в осознании того, что геометрия — свойства различных линий, а значит, наборов точек, а значит, наборов действительных чисел — может рассматриваться, как ветвь арифметики. Мы не пойдем по этому пути в настоящей главе, но вам следует иметь в виду, что, хотя мы и будем сосредотачиваться на идеях, которые являются явно арифметическими, в скрытом виде они включают и другие области математики, такие как геометрия (рис. 10.4).
Рис. 10.4.У греков было абстрактное представление о пространстве, и поэтому они преуспели в геометрии. Здесь мы видим, как параболы, гиперболы и эллипсы (включая частный случай круга) можно рассматривать как наборы чисел, получаемые посредством сечений конуса в разных направлениях. Теперь мы знаем, благодаря пионерской работе Декарта, как связать эти формы с алгебраическими уравнениями, и поэтому можем видеть связи между геометрией пространства и арифметическими свойствами определенных наборов чисел.
На самом деле, арифметика даже более богата. В соответствии с чрезвычайно важной, но обманчиво краткой теоремой, которую доказал в 1915 г. немецкий математик Леопольд Лёвенгейм (1878-1957) и усовершенствовал в 1920 г. норвежец Альберт Тораф Сколем (1887-1963), система правил, подобных правилам арифметики, действует в любой области знания, которая может быть формализована в терминах набора аксиом. Если бы в школе вам говорили, что, согласно теореме Лёвенгейма-Сколема, вы, на самом деле, моделируете процесс вывода заключений из квантовой механики, теории естественного отбора и юриспруденции (постольку, поскольку эти области знания могут быть выражены в терминах аксиом), это могло бы смягчить утомление от узнавания, как извлекать квадратный корень и проделывать длинные упражнения на деление. То же самое верно относительно остальной части этой главы: хотя многое в ней будет читаться, как относящееся к арифметике, имейте в виду, что это в действительности относится к любой систематизированной области человеческого знания. Если уж это не захватывает дух, то я просто не знаю, чем вас пронять.
Некоторые иррациональные числа, включая π, но не √2, являются трансцендентными, в том смысле, что они «трансцендируют», переступают обычные алгебраические уравнения. Это просто означает, что они не являются решениями простых алгебраических уравнений, подобных 3x 2− 5x + 7 = 0. Так, x= √2 есть решение уравнения х 2− 2 = 0, поэтому (как решение такого уравнения), это число алгебраическое, а не трансцендентное. Однако не существует уравнения такого вида, решением которого было бы x= πили x = e, поэтому πи eне только иррациональные, но и трансцендентные числа. В 1934 г. русский математик Александр Гельфонд (1906-68) доказал, что a bявляется трансцендентным, если aалгебраическое (отличное от 0 и 1) число, a b— алгебраическое и иррациональное (как √2); так, 2 √2, например, трансцендентно, поскольку 2 — алгебраическое, а иррациональное число √2 — тоже алгебраическое. Поэтому мы сразу знаем, что не существует алгебраического уравнения, решением которого было бы 2 √2. Между прочим, название «алгебра», которое только что появилось, произошло от Al-jabr w'al muqâbala(Восстановление и упрощение), названия книги Мухаммеда ибн Муса аль-Хорезми, написанной в 830 г. Al-jabr, «возвращение», здесь относится к решению уравнений, но очаровательно, что этот термин означает также и «костоправ». Аль-Хорезми отличился дважды: его имя тоже является источником термина «алгоритм», обозначающего серию процедур для решения уравнений.
Мы видели, что решения различных уравнений порождают классы чисел, известные под общим названием «алгебраические числа». Решения уравнений, подобных 2x = 1, дают нам рациональные числа (в данном случае x= 1/2), в то время как уравнения, подобные x 2= 2, дают нам иррациональные числа (в данном случае x= √2); числа, не являющиеся решениями уравнений, подобных этим, являются трансцендентными числами (как x= 2 √2). Натуральные числа можно представить как решения уравнений, подобных x − 2 = 1(с решением x= 3), а отрицательные числа как решения уравнений, подобных x + 2 = 1(с решением x= −1). Но существует простое уравнение, выпадающее из этого списка: каково решение уравнения x 2+ 1 = 0? Ни одно из чисел введенных ранее не является его решением, поскольку квадрат любого из них положителен и, будучи прибавлен к 1, не может дать нуля. В значительной мере потому, что математики не хотели признавать, что некоторые уравнения не имеют решения, они ввели понятие мнимого числа i, которое является решением уравнения x 2+ 1 = 0; другими словами, x= √( −1). Поскольку они — на самом деле, Декарт — считали, что чисел, подобных iи i, умноженному на любое число, в действительности не существует, они и назвали их «мнимыми».
Вскоре стало ясно, что некоторые уравнения, такие как x 2− x + 1 = 0, имеют решения, представляющие собой комбинации действительных и мнимых чисел, в данном случае x= ½ + (½√3) iи x= ½ −(½√3) i. Эти комбинации названы комплексными числами; первый член ½ в этом примере является обычным «действительным» числом, а второй член ±(½√3) iявляется мнимым. Были созданы специальные правила для проведения вычислений с этими двухкомпонентными действительными числами, но они явились естественным расширением правил, которые мы используем для действительных чисел, и не вызывают особых трудностей.
Действительные числа могут быть, как мы видели, упорядочены в прямую линию. Комплексные числа становятся немного менее таинственными, как только мы понимаем, что каждое из них можно изобразить точкой на плоскости, на которой действительная компонента числа равна расстоянию от начала координат по горизонтальной оси, а мнимая компонента равна расстоянию от начала координат по вертикальной оси (рис. 10.5). Другими словами, комплексные числа на самом деле являются парами чисел: комплексное число 1 + 2 i, например, является просто двухкомпонентным числом (1, 2), которое мы можем представить точкой с координатами 1 см по горизонтальной оси и 2 см по вертикальной оси. Введем другой способ, посредством которого мы можем представить себе комплексное число в виде костяшки домино, с действительной частью числа на левой половине ее прямоугольника и с мнимой частью на правой половине. В будущем, если вы вынете костяшку домино 4 + 3, представляйте себе ее в виде комплексного числа 4 + 3 i. Если вы чувствуете себя дискомфортно среди образов такого рода, не беспокойтесь: комплексные числа, если не считать мимолетных упоминаний, больше не появятся в этой главе.
Рис. 10.5.Комплексное число является двухкомпонентным числом и как таковое может быть представлено точкой на плоскости. Например, комплексное число 2 −1 iобозначается точкой с координатами 2 единицы по горизонтальной оси и 1 единица вниз по вертикальной оси. Операции с комплексными числами есть просто операции с двухкомпонентными объектами.
- Предыдущая
- 97/110
- Следующая
