Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Личность и Абсолют - Лосев Алексей Федорович - Страница 145
b) Натуральный ряд дает нам числа, бесконечно разнообразные по количеству, но числа, так сказать, в их статическом употреблении. Хотя натуральный ряд сам по себе и есть становление, но входящие в его состав числа даны отнюдь не в своем становлении. Они—статичны. Становление относится здесь к стихии самого порождения чисел, самого их возникновения. Но о становлении каждого числа в отдельности ровно ничего не говорится в понятии натурального ряда. Итак, эти числа статичны и взаимно изолированы. С другой стороны, типы числа, будучи связаны между собою диалектически, отнюдь не связаны между собою количественно. Они связаны диалектически, т. е. исключительно понятийно, категориально; они связаны как категории чисел, а не как числа с тем или другим количественным значением. В этом смысле они абсолютно изолированы. Итак, числа натурального ряда связаны между собою количественно (да и то в совершенно узком и специальном значении этого слова) и совершенно не связаны категориально (все они—одна и та же категория); и типы числа связаны между собою чисто категориально и совершенно не связаны количественно (ко всем ним применимы любые количества). Возникает диалектическая необходимость так объединить числа натурального ряда с типами чисел, чтобы отношения между числами натурального ряда были не только количественными, но и типовыми, а отношения между типами числа были не только типовыми, но и количественными. Короче говоря, необходим диалектический синтез того и другого.
c) Всякий синтез есть прежде всего становление. В процессе становления отождествляются такие бытийные и такие инобытийные моменты, которые—как тезис и антитезис—стоят абсолютно внеположно друг в отношении друга. Следовательно, й здесь мы должны найти некое становление, в котором количественные различия превращались бы в типовые, а типовые получали бы качественное выражение. Это возможно в тех числовых процессах, которые именуютсяарифметическими действиями.
2. Что всякое арифметическое действие есть некое становление, это ясно само собой, ибо для осуществления сложения, вычитания и пр. необходимо, чтобы нечто произошло. Тут мало простого наличия статических и изолированных чисел; необходимо, чтобы они вошли в какоето взаимное объединение и сплетение, чтобы они входили одно в другое и вообще были во всестороннем взаимоотношении. Итак, всякое арифметическое действие есть становление. Но какое это становление? Это именно такое становление, в котором происходит качественное изменение количественных установок. Пусть, напр., мы умножаем —2 на 5 и из полученного произведения извлекаем квадратный корень. Тут от двух типов числа (положительного и отрицательного) мы путем чисто количественных операций переходим совершенно к новому типу числа (к мйимому). Пусть мы имеем сумму 3+2 и делим ее на 2: из одного (или двух) типов числа (положительного и отрицательного) мы получаем опять третий (дробное число). И т. п. Ясно, что всякое арифметическое действйе есть становление, и как раз становление в смысле диалектического синтеза чисел натурального ряда с теми или другими типами числа.
Таково диалектическое место самой категории арифметического действия.
3. Необходимо отметить следующее. Основное место арифметического действия есть то становление, которое есть синтез натурального ряда как бытия и типов числа как инобытия. Но это только основное место. Другими словами, здесь впервые рождается арифметическое действие как отвлеченная категория. Арифметическое действие само по себе, однако, не есть просто категория. Оно есть именно действие, и потому в нем всегда живет та или другая практически–жизненная сложность. Эта сложность для диалектика есть, конечно, опять–таки не что иное, как нераспутанный клубок многочисленных категорий. И если эта сложность действительно жизненная, то клубок категорий всегда в конце концов целесообразно распутывается, и запутанное предстает во всей своей смысловой ясности. Мы и тут применим наши обычные методы и попробуем поискать, не зарыта ли и в каждом отдельном действии та первообразная пентада, которую мы имели в общей теории числа.
4. Итак, формулируем перво–прищип арифметических действий, их принцип и их реальную структуру.
а) Перво–принцип арифметических действий, насколько последние вытекают из синтеза натурального ряда со всевозможными типами числа вообще, есть, очевидно, разноскомбинированное числовое становление. Натуральный ряд чисел, или, что то же, арифметический счет, в своем наиобщем виде есть простейшее и примитивнейшее становление чисел вообще. Он содержит в себе некую единонаправленную, монотонную энергию становления. Со вступлением в синтез с разными типами числа он начинает нарушать эту единую направленность становления, начинает вырывать из этой стихии числового становления отдельные куски, отдельные отрезки и начинает по–разному их комбинировать. Это и превращает счет вообще в то или иное арифметическое действие. Следовательно, перво–принцип арифметических действий есть разнонаправленное, разнокомбинируемое числовое становление, или, попросту, так или иначе кодифицированный счет. Этот первопринцип 1) требует наличия разных отрезков общечислового становления, 2) полагает их вместе один за другим как некую единую последовательность и 3) постулирует то или [иное] взаимоотношение, в которое должны вступить взятые отрезки. Таковы функции перво–принципа.
Заметим, что если арифметическое действие есть синтез натурального ряда (счета) и числовых типов, то это значит, что здесь счет рассматривается для целей получения того или иного числа и число того или иного типа рассматривается с точки зрения происхождения его из операций счета. Но число того или иного типа в сравнении со счетом (который всегда есть процесс) является чем–то стабильным. Поэтому арифметическая операция, будучи процессом, должна быть ввиду своей синтетичности и чем–то стабильным. Она есть всегда и метод становления, и определенный результат различного методического комбинирования этого становления. Вот почему существует не только категория «плюс», но и «сумма», не только «минус», но и «вычитание» и пр. И вот почему перво–принцип арифметических действий обязательно требует сопоставления разных становлений и искания стабильных результатов этого сопоставления.
b) Каков же принцип арифметических действий? Принцип отличается от перво–принципа тем, что рисует реальный переход к каждому отдельному действию, в то время как перво–принцип говорит о всех действиях как о чем–то неделимом. Другими словами, принцип арифметического действия раскрывает содержание третьего момента первопринципа из только что указанных. В самом деле, в каком же реальном взаимоотношении находятся эти сопоставленные лицом к лицу отрезки общечислового становления?
Во–первых, мы не можем оставить [их] в том раздельном виде, в каком они нам предъявлены, и только говорить об их смысловом единстве. Будучи один в отношении другого инобытием, эти разные отрезки становления, однако, непосредственно примыкают друг в отношении к другу уже в силу перво–принципа. Перво–принцип вырвал из натурального ряда несколько разных чисел и приставил их друг к другу, предоставивши судить об их дальнейшем взаимоотношении уже более конкретным принципам. И вот первое и простейшее, что может появиться с точки зрения диалектики, — это оставить их в такой взаимосопоставленности и только пробовать объединять или разъединять их по их смыслу, т. е. по их количественному содержанию. Отбросим эти числа как факты, как некоторые акты полагания, потому что по актам полагания, по их фактической положенности мы примем их в их непосредственном взаимоследовании. Но зато мы будем судить о них в таком раздельном, но непосредственно–смежном положении—об их различии и об их тождестве. И что тогда получится, какой тогда возникнет результат? Это отождествление или различение двух раздельных, но непосредственно–смежных становлений есть сложение или вычитание.
Во–вторых, совсем необязательно оставаться при таком взаимопротивопоставлении разных отрезков общечислового становления, да притом еще с таким внешнесубстанциальным противостоянием, когда оба они во всех смыслах чужды один другому и определенно отрицают один другого. Можно поставить вопрос: нельзя ли их сблизить между собою, нельзя ли их различать и отождествлять так, чтобы эти различения и отождествления относились не просто к их смыслу без всякого внимания к их несовместимости по факту, но так, чтобы этим затрагивалось и их фактическое существование, чтобы не только смысл их бытия, но и бытие их смысла стало в той или другой мере единым?
- Предыдущая
- 145/187
- Следующая
