Вы читаете книгу
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Семихатов Алексей
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей - Страница 79
Операторы, применяемые в математической физике, разумеется, действуют на значительно более сложных пространствах, чем в нашем примере. Эти пространства не двумерны и даже не трехмерны (подобно обычному пространству, которое окружает нас в быту), и даже не четырехмерны (как пространство-время, возникающее в теории относительности). Они представляют собой абстрактные математические пространства с бесконечным числом измерений. Каждая точка в таком пространстве является функцией. Операторы преобразуют функции в другие функции, а на языке пространств и точек это выражается как отображение одной точки в другую.
Чтобы получить первое представление о том, каким образом функцию можно отождествить с точкой в пространстве, рассмотрим один простой класс функций — квадратичные многочлены p + qx + rx2. Семейство всех таких многочленов можно представить в трехмерном пространстве, если многочлену p + qx + rx2 поставить в соответствие точку с координатами (p, q, r). В том же духе, четырехмерное пространство будет моделировать кубические многочлены; пятимерное пространство — многочлены четвертой степени и т.п. Далее, поскольку некоторые функции можно записать в виде рядов, а ряд выглядит как бесконечный многочлен (например, ex записывается в виде 1 + x + 1/2x2 + 1/6x3 + 1/24х4 + …), становится понятно, как бесконечное число измерений может пригодиться при описании функций. На этом языке ex станет точкой в пространстве, заданной бесконечным набором координат (1, 1, 1/2, 1/6, 1/24, …).
Функции, с которыми имеет дело квантовая механика, — это волновые функции, которые определяют вероятность того, что частицы, составляющие описываемую систему, занимают определенные положения и имеют определенные скорости в данный момент времени. Другими словами, каждая точка в пространстве функций представляет некоторое состояние системы. Используемые в квантовой механике операторы кодируют наблюдаемые свойства системы; наибольшую известность имеет оператор Гамильтона, который кодирует энергию системы. Собственные значения оператора Гамильтона представляют собой уровни энергии в системе. Далее, каждое собственное значение определенным образом связывается с вполне определенной точкой (т.е. функцией) в бесконечномерном пространстве, называемой собственной функцией; она служит для представления состояния системы при заданном уровне энергии. Эти собственные функции играют ключевую роль при описании состояний системы. Всякое возможное состояние системы, любое ее физическое проявление дается некоторой линейной комбинацией собственных функций, в точности так же, как всякую точку в трехмерном пространстве можно записать в виде (x, y, z), т.е. в виде линейной комбинации точек (1, 0, 0), (0, 1, 0) и (0, 0, 1).
Ален Конн построил довольно своеобразное пространство, на котором предстояло действовать его риманову оператору. Простые числа встроены в это пространство некоторым способом, заимствованным из понятий алгебраической теории чисел. Дадим краткий обзор работы Конна.
V.B основе построения всей классической физики лежат вещественные числа, такие как 22,45915771836…; поскольку такие числа не имеют замкнутого вида, требуется бесконечная последовательность десятичных разрядов, чтобы теоретически достичь полной точности. Реальные физические измерения, однако, носят приближенный характер, давая что-то вроде 22,459. Это рациональное число, равное 22 459/1000. Все, что есть в физическом эксперименте, можно, таким образом, выразить с помощью рациональных чисел — элементов из Q. Чтобы перейти от мира эксперимента к миру теории, надо пополнить поле Q (см. главу 11.v). Другими словами, требуется его расширить таким образом, чтобы для всякой имеющей предел бесконечной последовательности чисел из Q этот предел лежал бы или в самом Q, или в поле-расширении. Обычный и естественный способ такого пополнения приводит к вещественным числам R и комплексным числам С.
Однако в алгебраической теории чисел имеются и другие возможности для пополнения Q. В 1897 году прусский математик Курт Хензель[183], работая над определенной задачей в теории алгебраических полей, ввел целое новое семейство объектов, подобных полю чисел вида а + bv2, которое мы рассматривали в главе 17.ii. Эти объекты называются p-адическими числами. Для каждого простого числа p имеется по одному из этих экзотических созданий, содержащих бесконечно много элементов. Кирпичики, из которых строится такое поле, — это обсуждавшиеся в главе 17.ii «циферблатные» кольца размера p, p2, p3, p4 и т.д. В моих обозначениях это кольца CLOCKp, CLOCKp2, CLOCKp3, …. Например, поле 7-адических чисел построено из CLOCK7, CLOCK49, CLOCK343, CLOCK2401, …. Помните приводившуюся ранее иллюстрацию того, как конечное поле можно использовать для построения бесконечного поля? Так вот, здесь используется бесконечное число конечных колец для построения нового бесконечного поля!
Поле p-адических чисел обозначается символом Qp. Таким образом, имеются поле Q2, поле Q3, поле Q5, поле Q7, поле Q11 и т.д. Каждое из них — полное поле: Q2 есть поле 2-адических чисел, Q3 есть поле 3-адических чисел и т.д.
Как можно догадаться уже из обозначений, p-адические числа чем-то похожи на обычные рациональные числа. Однако поле Qp богаче и устроено более сложно, чем поле Q, и в некоторых отношениях скорее напоминает поле вещественных чисел R. Как и R, поле Qp можно использовать для пополнения поля Q.
Здесь вы можете высказать определенное недоумение: «Все отлично, но ведь было сказано, что поле Qp этих странных новых объектов — р-адических чисел — существует для всякого простого числа p и что любое Qp позволяет пополнить поле Q; так какое же из них надо предпочесть? Q2? Q3? Q11? Q45827? Какое простое число должен выбрать профессор Конн, чтобы устроить свой фокус — перекинуть мост между простыми числами и физикой динамических систем?»
Ответ таков: их все! Дело в том, что имеется алгебраическое понятие, называемое аделем, которое охватывает в свои широкие объятия все Qp для всех простых чисел 2, 3, 5, 7, 11, …. И там же оказываются и вещественные числа! Адели построены из Q2, Q3, Q5, Q7, … и R способом, напоминающим тот, каким p-адические числа построены из CLOCKp, CLOCKp2, CLOCKp3, …. Если угодно, адели находятся на один уровень абстракции выше p-адических чисел, которые сами располагаются на один уровень абстракции выше, чем рациональные числа.
Если от всего этого у вас кружится голова, то достаточно сказать, что имеется класс суперчисел, являющихся одновременно 2- адическими, 3-адическиими, 5-адическими, … и при этом еще и вещественными. В каждое из этих суперчисел вложены все простые числа.
Без сомнения, адель — довольно заумное понятие. Однако нет на свете ничего настолько заумного, чтобы оно рано или поздно не пробило себе дорогу в физику. В 1990-х годах математические физики взялись за создание адельной квантовой механики, где реальные измерения в эксперименте, приводящие к рациональным числам, воспринимаются как проявление этих причудливых созданий, вытащенных из темных глубин математической бездны.
вернуться183
Курт Хензель (Гензель) (1861-1941) — еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель — ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» (Купферберг X. Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе — университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversitat Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». — Примеч. перев.)
- Предыдущая
- 79/95
- Следующая
