Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер - Страница 118
При этом разрушается не только материя, но даже и само пространство-время прекращает свое существование. Такая окончательная катастрофа называется пространственно-временно́й сингулярностью. Читатель, конечно, может задаться справедливым вопросом, откуда мы знаем, что подобные катастрофы должны иметь место, и при каких обстоятельствах материю и пространство-время ожидает такая судьба. Вывод о неизбежности пространственно-временно́й сингулярности следует из классических уравнений общей теории относительности и оказывается справедливым при любых условиях, в которых находится уже сформировавшаяся черная дыра. Первоначальная модель Оппенгеймера и Снайдера (Оппенгеймер, Снайдер [1939]) как раз и демонстрировала поведение подобного типа. Долгое время, однако, астрофизики питали надежду, что такое сингулярное поведение является артефактом специальной симметрии, которая допускалась в этой модели с самого начала. Предполагалось, что в реалистичном (асимметричном) случае коллапсирующая материя могла бы скручиваться каким-то другим способом, а затем снова вырываться наружу. Но эти надежды исчезли после того, как было проведено математическое исследование более общего характера, которое послужило основой для формулировки так называемых теорем о сингулярности (см. Пенроуз [1965]; Хокинг, Пенроуз [1970]). Эти теоремы утверждали, что в рамках классической общей теории относительности с разумными источниками гравитации, пространственно-временны́е сингулярности неизбежны в случае гравитационного коллапса.
Таким же образом, меняя направление времени, мы приходим к выводу о неизбежности соответствующей начальной пространственно-временно́й сингулярности, которую мы теперь представляем как Большой взрыв, в любой (надлежащим образом) расширяющейся вселенной. Только теперь, вместо окончательного разрушения пространства-времени и материи, эта сингулярность представляет собой рождение пространства-времени и материи. Может показаться, что имеется полная временна́я симметрия между этими двумя типами сингулярностей: начальным типом, при котором пространство-время и материя рождаются, и конечным типом, когда пространство-время и материя уничтожаются. Конечно, между этими двумя ситуациями действительно имеется важная аналогия, но исследуя их более детально, мы обнаружим, что они не являются точными копиями, обращенными во времени относительно друг друга. И для нас важно разобраться в тех различиях геометрического характера, которые имеются между ними, поскольку именно они оказываются ключевыми в понимании источника второго начала термодинамики!
Обратимся к наблюдениям нашего астронавта В, который отважился на самопожертвование ради науки. Он наблюдает приливные силы, которые очень быстро возрастают до бесконечности. Поскольку он путешествует в пустом пространстве, то он ощущает деформирующие эффекты, которые оставляют величины объемов неизменными и которые создаются частью тензора пространственно-временно́й кривизны, обозначенной мною как ВЕЙЛЬ (см. главу 5, «Общая теория относительности Эйнштейна»). Другая часть тензора пространственно-временно́й кривизны, отвечающая за общее изменение объемов и называемая РИЧЧИ, обращается в нуль в пустом пространстве. Может оказаться, что В все же встретится с какой-нибудь материей в некоторый момент, но даже если это действительно произойдет (ведь, в конце концов, и сам астронавт состоит из материальных частиц), мы, вообще говоря, все равно обнаружим, что величина ВЕЙЛЬ будет намного превосходить величину РИЧЧИ. Таким образом, значение кривизны вблизи конечной сингулярности полностью определяется поведением тензора ВЕЙЛЬ. Этот тензор, вообще говоря, стремится к бесконечности:
ВЕЙЛЬ → ∞
(хотя это стремление может иметь осциллирующий характер). Эта ситуация оказывается типичной для пространственно-временной сингулярности[185]. Такое поведение связано с высокоэнтропийной сингулярностью.
Однако в случае Большого взрыва, ситуация оказывается совершенно другой. Стандартная модель Большого взрыва выводится из рассмотренных нами ранее вселенных Фридмана-Робертсона-Уокера, обладающих высокой степенью симметрии. Здесь деформирующее приливное воздействие, связанное с тензором ВЕЙЛЬ, вообще отсутствует. Вместо него теперь имеется направленное внутрь симметричное ускорение, действующее на любую сферическую поверхность, состоящую из пробных частиц (см. рис. 5.26). Но это — результат воздействия тензора РИЧЧИ, а не тензора ВЕЙЛЬ. В любой ФРУ-модели всегда имеет место тензорное уравнение:
ВЕЙЛЬ = 0.
По мере того, как мы приближаемся к начальной сингулярности все ближе и ближе, мы обнаруживаем, что именно РИЧЧИ, а не ВЕЙЛЬ, становится бесконечным и, таким образом, именно РИЧЧИ, а не ВЕЙЛЬ, определяет начальную сингулярность. Значит, мы имеем дело с низкоэнтропийной сингулярностью.
Если мы исследуем сингулярность схлопывания в точной коллапсирующей ФРУ-модели, мы и здесь обнаружим, что в момент схлопывания ВЕЙЛЬ = 0, тогда как РИЧЧИ стремится к бесконечности. Однако, эта особая ситуация дает нам совсем не то, что мы ожидаем от более реалистичной модели, в которой учитывается также и гравитационная конденсация. С течением времени вещество, находящееся первоначально в виде рассеянного газа, будет конденсироваться в звездные галактики. В этом процессе большое число звезд испытают гравитационное сжатие и превратятся в белые карлики, нейтронные звезды и черные дыры, а также в гигантские черные дыры, которые вполне могут образоваться в центрах галактик. Такого рода конденсация — особенно в случае черных дыр — связана с огромным возрастанием энтропии (рис. 7.16).
Рис. 7.16. Для обычного газа повышение энтропии связано с увеличением степени однородности его распределения внутри ящика. Для гравитирующих систем имеет место обратная ситуация. Высокая энтропия соответствует гравитационному конденсату, а максимальная — образованию черной дыры
Может показаться странным, на первый взгляд, что конденсированные состояния дают большую энтропию, чем состояния с однородным распределением, особенно если вспомнить, что для газа в ящике его конденсированные состояния (например, случай, когда весь газ собирается в одном из углов ящика) имели низкую энтропию, в то время как однородное распределение, соответствующее тепловому равновесию — имело высокую энтропию. При учете гравитации ситуация меняется на обратную благодаря универсальности гравитационного притяжения. С течением времени, конденсация становится все более и более сильной и, в конце концов, множество сконденсировавшихся черных дыр соединяет свои сингулярности в финальной сингулярности большого коллапса. Такая конечная сингулярность не имеет ничего общего с тем идеализированным большим коллапсом, который имеет место в коллапсирующей ФРУ-модели, где действовало ограничение ВЕЙЛЬ = 0. По мере накопления числа сконденсировавшихся объектов, тензор ВЕЙЛЬ имеет тенденцию непрерывно увеличиваться[186] и, вообще говоря, ВЕЙЛЬ → ∞ в конечной сингулярности. Посмотрите на рис. 7.17, где показана полная история замкнутой вселенной в соответствии с этой общей картиной.
Рис, 7.17. Полная история замкнутой вселенной, которая начинается с однородного низкоэнтропийного большого взрыва с ограничением ВЕЙЛЬ = 0 и заканчивается высокоэнтропийным большим коллапсом — представляющим собой сгущение большого числа черных дыр — с условием ВЕЙЛЬ → ∞
- Предыдущая
- 118/160
- Следующая
