Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер - Страница 124
Рис. 8.2. Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?
Мы предполагаем, что вектор состояния равен |X) непосредственно перед О, а не сразу после этого наблюдения, и применим процедуру унитарной эволюции вспять по времени вплоть до момента предыдущего наблюдения О'. Предположим, что в результате обратной эволюции мы получим состояние, описываемое вектором |X') (сразу же после наблюдения О'). В нормальном описании эволюции вперед во времени, изображенном на рис. 8.1, сразу же вслед за О' мы имели другое состояние |ψ') (результат наблюдения О', при котором эволюция вперед во времени вектора |ψ') переводит его в |ψ) в момент наблюдения О). Теперь в нашем обращенном во времени описании у вектора |ψ') тоже есть своя роль: он представляет состояние системы непосредственно перед О'. Вектор состояния |ψ') соответствует состоянию, фактически наблюдавшемуся в точке О', так что с «обращенной» точки зрения мы рассматриваем |ψ') как результат наблюдения О' в обращенном вспять времени. Расчетное значение квантовомеханической вероятности р', связывающее результаты наблюдений в точках О и О', теперь определяется уменьшением величины |X'|2 при проекции |X') в направлении |ψ') (что равно уменьшению |ψ'|2 при проекции |ψ') в направлении |ψ')). То, что мы получим то же самое значение, что и раньше, является фундаментальным свойством оператора U[193].
Таким образом, может создаться видимость установления симметричности во времени квантовой теории даже в случае, когда помимо обычной процедуры унитарной эволюции U учитывается также и разрывный процесс, описываемый процедурой редукции R вектора состояния. Это, однако, неверно. Квантовая вероятность р описывает — независимо от того, как она рассчитывается — вероятность получить результат (а именно, |X)) в точке О при условии определенного результата (а именно, |ψ')) в точке О'. Эта вероятность не обязательно равна вероятности получить данный результат в точке О' при условии данного результата в точке О, а ведь именно последнюю вероятность[194] и должна определить обращенная во времени квантовая механика. Просто удивительно, до чего много физиков молчаливо полагают эти две вероятности равными друг другу. (Я сам этим грешил — см. Пенроуз [1979б], с. 584.) Однако наиболее вероятно, что эти две вероятности совершенно различны и только первая из них правильно определяется в рамках квантовой механики!
Давайте поясним эту ситуацию на простом конкретном примере. Предположим, что у нас есть лампа L и фотоэлемент (то есть, детектор фотонов) Р. Между L и P разместим полупосеребренное зеркало М, наклонив его под углом равным, скажем, 45° к линии, соединяющей точки L и Р (рис. 8.3).
Рис. 8.3. Необратимость во времени R-процедуры в простом квантовом эксперименте. Вероятность регистрации фотона фотоэлементом при условии излучения фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна одной второй
Предположим, что лампа время от времени случайным образом испускает фотоны, и что конструкция ее такова (в ней используются параболические зеркала), что фотоны всегда оказываются очень точно нацеленными на Р. При каждом попадании фотона на фотоэлемент последний регистрирует это событие, причем мы предполагаем, что устройство срабатывает со 100 %-ной надежностью. Предположим также, что каждый факт излучения фотона регистрируется в точке L и тоже со 100 %-ной надежностью. (Ни одно из этих идеализированных требований не противоречит принципам квантовой механики, хотя практическое достижение такой эффективности может представлять определенные трудности.)
Свойства полупосеребренного зеркала М таковы, что оно отражает в точности половину попадающих на него фотонов и пропускает остальную половину. Правильнее рассматривать это с точки зрения квантовой механики. Волновая функция фотона падает на зеркало и расщепляется на две волновых функции. Амплитуда отраженной части волны равна 1/√2, а амплитуда прошедшей части волны тоже равна 1/√2. Обе части волновой функции должны считаться «сосуществующими» (при нормальном описании вперед по времени) до того момента, когда предполагается имевшим место «наблюдение». В этой точке ситуация с одновременно сосуществующими альтернативами разрешается (в пользу одной или другой) фактически реализованной альтернативы с вероятностями, равными квадратам (модулей) соответствующих амплитуд, а именно (1/√2)2 = 1/2 в обоих случаях. После выполнения наблюдения вероятности отражения или прохождения фотона действительно оказываются равными одной второй.
Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L. Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1/√2, поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его — и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене (см. рис. 8.3) и тоже с амплитудой 1/√2. Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А. Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А. Мы можем определить, что сделал бы фотоэлемент в точке А, будь он там установлен, просто глядя на фотоэлементы в точках L и Р.
Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:
«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р?»
Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1/√2 для фотона, прошедшего путь LMP, и амплитуда, равная 1/√2, для фотона, прошедшего путь LMA. Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1/2 и 1/2, попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный
- Предыдущая
- 124/160
- Следующая
