Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер - Страница 27
1 + Tk(k) x H(k; k) = Tk(k).
Если вычисления Тk(k ) останавливаются, то мы приходим к противоречию (в этом случае Н(k; k) должно равняться единице, но тогда возникнет невыполнимое равенство: 1+Тk(k ) = Тk(k )). Значит, Тk(k ) не может остановиться, т. е.
Тk(k ) = □.
Но алгоритм не может этого «знать», потому что, если бы он давал Н(k; k) = 0, мы снова пришли бы к противоречию (мы получили бы тогда неверное соотношение 1+0=□).
Таким образом, если мы можем отыскать k, то мы знаем, как построить вычислительную процедуру, для которой алгоритм не дает решения проблемы остановки, но нам ответ известен! А как нам найти k ? Это непростая задача. Необходимо тщательно изучить конструкцию H(n; m ) и Tn(m) и понять, как в точности действует 1 + Тn(n ) х Н(n; n) в качестве машины Тьюринга. Затем надо определить номер этой машины, который и есть k. Конечно, это выполнить трудно, но вполне возможно[54]. Из-за этих трудностей вычисление Тk(k ) нас бы вовсе не интересовало, не будь она специально предназначена для доказательства неэффективности алгоритма H! Важно то, что мы получили строго определенную процедуру, которая для любого наперед заданного алгоритма H позволяет найти такое k, что для Тk(k ) этот алгоритм не может решить проблему остановки, т. е. мы тем самым превзошли его. Возможно, мысль о том, что мы «умнее» каких-то алгоритмов, принесет нам некоторое удовлетворение!
На самом деле, упомянутая процедура настолько хорошо определена, что мы могли бы даже найти алгоритм для нахождения k по заданному H. Поэтому, прежде чем мы «погрязнем» в самодовольстве, мы должны осознать, что этот алгоритм может улучшить H[55], поскольку он, по сути, «знает», что Тk(k) = □, - или все-таки нет? В предыдущем изложении было удобно использовать антропоморфный термин «знать» по отношению к алгоритму. Однако не мы ли в конечном счете «знаем», тогда как алгоритм просто следует определенным нами правилам? А может быть мы сами просто следуем правилам, запрограммированным в конструкции нашего мозга и в окружающей нас среде? Эта проблема затрагивает не только алгоритмы, но и то, как мы выносим суждения об истинности и ложности. К этим важнейшим проблемам мы вернемся позднее. Вопрос о математической истине (и ее неалгоритмической природе) будет рассмотрен в главе 4. На данный момент мы, по крайней мере, получили некоторое представление о значении слов «алгоритм» и «вычислимость» и достигли понимания некоторых из относящихся к ним вопросов.
Лямбда-исчисление Черча
Понятие вычислимости — очень важная и красивая математическая идея. Примечателен также и ее малый возраст в сравнении с другими столь же фундаментальными математическим проблемами: она была впервые выдвинута только в 1930-х годах. Эта проблема имеет отношение ко всем областям математики (хотя, справедливости ради, отметим, что большинство математиков пока не часто обращаются к вопросам вычислимости). Сила этой идеи связана отчасти с существованием четко определенных и все же неразрешимых математических операций (как, например, проблема остановки машины Тьюринга и некоторые другие, которые мы рассмотрим в главе 4). Если бы не было таких невычислимых объектов, то теория алгоритмической разрешимости не представляла бы особого интереса для математики. В конце концов, математики любят головоломки.
Задача о разрешимости определенной математической операции может их заинтриговать, особенно потому, что общее решение этой головоломки само по себе алгоритмически не разрешимо.
Следует сделать еще одно замечание. Вычислимость — это по-настоящему «абсолютная» математическая идея. Это абстрактное понятие, которое никак не зависит от какой-либо конкретной реализации в терминах «машин Тьюринга» в том виде, как я их описал выше. Как я уже указывал, нет необходимости придавать какое-либо специальное значение «лентам», «внутренним состояниям» и т. п., характерным для гениального, но тем не менее частного подхода Тьюринга. Существуют также и другие способы выражения идеи вычислимости, причем исторически первым было «лямбда-исчисление», предложенное американским логиком Алонзо Черчем совместно со Стивеном Клини. Процедура, предложенная Черчем, значительно отличалась от метода Тьюринга и была гораздо более абстрактна. Фактически, форма, в которой Черч изложил свою теорию, делала связь между ними и чем бы то ни было «механическим» совсем не очевидной. Главная идея, лежащая в основе процедуры Черча, абстрактна по своей сути — это математическая операция, которую сам Черч назвал «абстрагированием».
Мне кажется, что стоит привести краткое описание схемы Черча не только потому, что она подчеркивает математическую природу идеи вычислимости, не зависящую от конкретного понятия вычислительной машины, но и потому, что она иллюстрирует мощь абстрактных идей в математике. Читатель, не достаточно свободный в математике и не увлеченный излагаемыми математическими идеями как таковыми, скорее всего предпочтет сейчас перейти к следующей главе — и не утратит при этом нить рассуждений. Тем не менее я полагаю, что таким читателям будет небесполезно следовать за мной еще какое-то время и оценить чудесную по своей стройности и продуманности схему Черча (см. Черч [1941]).
В рамках этой схемы рассматривается «универсальное множество» различных объектов, обозначаемых, скажем, символами
каждый из которых представляет собой математическую операцию, или функцию. (Штрихованные буквы позволяют создавать неограниченные наборы символов для обозначения таких функций.) «Аргументы» этих функций, т. е. объекты, на которые эти функции действуют, в свою очередь являются объектами той же природы, т. е. функциями. Более того, результат действия одной функции на другую (ее «значение») также представляет собой функцию. (Поистине, в системе Черча наблюдается замечательная экономия понятий.) Поэтому, когда мы пишем[56]
а = bс,
мы подразумеваем, что функция b, действуя на функцию c, дает в результате другую функцию а. В рамках этой схемы нетрудно сформулировать понятие функции двух или более переменных. Если мы хотим представить f как функцию двух переменных, скажем р и q, то мы можем просто написать
(fp)q
(что есть результат действия функции fp на функцию q ). Для функции трех переменных можно использовать выражение
((fp)q)r
и так далее.
Теперь мы можем перейти к описанию важнейшей операции абстрагирования. Для нее мы будем использовать греческую букву λ (лямбда). Непосредственно за ней будет следовать символ одной из функций Черча, скажем х, который мы будем рассматривать как «фиктивную переменную». Каждое появление х в квадратных скобках, следующих сразу за этим выражением, обозначает теперь просто место, куда подставляется все, что идет за всем этим выражением. Таким образом, когда мы пишем
- Предыдущая
- 27/160
- Следующая