Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер - Страница 37
Однако надежды Гильберта и его последователей были перечеркнуты, когда в 1931 году блестящий австрийский логик математики Курт Гедель выдвинул поразительную теорему, которая до основания разрушала программу Гильберта. Гедель показал, что любая подобная точная («формальная») система аксиом и правил вывода, если только она достаточна широка, чтобы содержать в себе описания простых арифметических теорем (как, например, «последняя теорема Ферма», рассмотренная в главе 2), и если она свободна от противоречий — то такая система должна включать утверждения, которые не являются ни доказуемыми, ни недоказуемыми в рамках формализма данной системы. Истинность таких «неразрешимых» утверждений, следовательно, не может быть выяснена с помощью методов, допускаемых самой системой. Более того, Гедель смог показать, что даже утверждение о непротиворечивости системы аксиом, будучи переведенным в форму соответствующей теоремы, само по себе является «неразрешимым». Для нас будет очень важным понять природу этой неразрешимости. Тогда мы увидим, почему выводы Геделя опровергали самое основание программы Гильберта. Мы также увидим, каким образом они дают нам возможность, воспользовавшись интуицией, выходить за пределы любой рассматриваемой формализованной математической системы. Это понимание будет решающим для того, чтобы, в свою очередь, лучше понять обсуждаемое далее.
Формальные математические системы
Необходимо будет несколько уточнить, что мы понимаем под «формальными математическими системами аксиом и правил вывода». Мы должны предположить наличие некоторого алфавита символов, через которые будут записываться математические выражения. Эти символы в обязательном порядке должны быть адекватны для записи натуральных чисел с тем, чтобы в нашу систему могла быть включена «арифметика». По желанию, мы можем использовать общепринятую арабскую запись 0, 1, 2, 3…, 9, 10, 11, 12… хотя при этом конкретные выражения для правил вывода становятся несколько более сложными, чем требуется. Гораздо более простые выражения получаются, скажем, при использовании записи вида 0, 01, 011, 0111, 01111… для обозначения последовательности натуральных чисел (или, в качестве компромисса, мы могли бы использовать двоичную запись). Однако, поскольку это могло бы стать источником разночтений в дальнейших рассуждениях, я буду для простоты придерживаться обычной арабской записи независимо от способа обозначения, которая может на самом деле использоваться в данной системе. Нам мог бы понадобиться символ «пробел» для разделения различных «слов» или «чисел» в нашей системе, но, так как это тоже может вызвать путаницу, то мы будем по мере необходимости использовать для этих целей просто запятую (,). Произвольные («переменные») натуральные числа (равно как и целые, рациональные и т. д.; но давайте здесь ограничимся натуральными) мы станем обозначать буквами, например, t, u, v, ω, х, у, z, t', t'', t''' и т. п. Штрихованные буквы t', t'',… вводятся нами в употребление, дабы не ограничивать число переменных, которые могут встретиться в произвольном выражении. Мы будем считать штрих (' ) отдельным символом формальной системы, так что действительное количество символов в системе остается конечным. Помимо этого нам также потребуются символы для базовых арифметических операций =, +, х («умножить») и т. д.; для различных видов скобок (,), [,], и для обозначения логических операций, таких как & («и»), => («следует»), V («или»), <=> («тогда и только тогда»), ~ («не»). Дополнительно нам будут нужны еще и логические «кванторы»: квантор существования Eк.с.(«существует… такое, что») и квантор общности Aк.о. («для любого… выполняется»). Тогда мы сможем такие утверждения, как, например, «последняя теорема Ферма», привести к виду:
— Eк.с.ω, х, у, z [(x + 1)ω+3+
+ (у + 1)ω+3 = (z+1)ω+3]
(см. главу 2, «Неразрешимость проблемы Гильберта»). (Я мог бы написать «0111» для «3», и, возможно, использовать для «возведения в степень» обозначение, более подходящее к рассматриваемому формализму; но, как уже говорилось, я буду придерживаться стандартной системы записи во избежании ненужной путаницы.) Это утверждение (если читать его до левой квадратной скобки) звучит как:
«Не существует таких натуральных чисел ω, х, у, z, что…».
Мы можем также переписать последнюю теорему Ферма при помощи Aк.о.:
Aк.о.ω, х, у, z [~ (х + 1)ω+3+ (у + 1)ω+3 = (z+1)ω+3],
которое будет читаться следующим образом (заканчивая символом «не» после левой квадратной скобки):
«Для любых натуральных чисел ω, х, у, z не может быть выполнено…»,
что логически эквивалентно написанному ранее.
Нам понадобятся еще и буквы, обозначающие целые утверждения, для чего я буду использовать заглавные буквы Р, Q, R, S… Таким утверждением может, к примеру, служить и вышеприведенная теорема Ферма:
F = ~ Eк.с.ω, х, у, z [(x + 1)ω+3+ (у + 1)ω+3 = (z+1) ω+3].
Утверждение может также зависеть от одной или более переменных; например, нас может интересовать формулировка теоремы Ферма для некоторого конкретного[71] значения степени ω + 3
G(ω) =~ Eк.с.x, y,z[(x + 1)ω+3+ (y+ 1)ω+3 = (z+1)ω+3],
так что G(0) утверждает, что «куб не может быть суммой кубов положительных чисел»; G(1) говорит о том же применительно к четвертым степеням и так далее. (Обратите внимание на отсутствие ω после символа Eк.с.). Тогда теорема Ферма гласит, что G(ω) выполняется для любого ω :
F = Aк.о.ω[G(ω)].
G() является примером так называемой функции исчисления высказываний, т. е. утверждением, которое зависит от одной или более переменных.
Аксиомы нашей системы будут представлять из себя перечень утверждений общего характера, чья справедливость в рамках принятого символизма предполагается самоочевидной. Например, для произвольных утверждений или функций исчисления высказываний Р, Q, R() мы могли бы указать среди прочих аксиом системы такие, как
(P&Q) => Р,
— (~ Р) <=> Р,
— Eк.с.х[R(x)] <=>Aк.о.x[~ R(x)],
- Предыдущая
- 37/160
- Следующая
