Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Философия Науки. Хрестоматия - Коллектив авторов - Страница 158
Среди многочисленных и разнообразных занятий науками и искусствами, которые питают человеческие умы, я полагаю, в первую очередь нужно отдаваться и наивысшее старание посвящать тем, которые касаются наипрекраснейших и наиболее достойных для познавания предметов. Такими являются науки, которые изучают божественные вращения мира, течения светил, их величины, расстояния, восход и заход, а также причины остальных небесных явлений и, наконец, объясняют всю форму Вселенной. А что может быть прекраснее небесного свода, содержащего все прекрасное! Эго говорят и самые имена: Caelum (небо) и Mundus (мир); последнее включает понятие чистоты и украшения, а первое — понятие чеканного (Caelatus). Многие философы ввиду необычайного совершенства неба называли его видимым богом. Поэтому, если оценивать достоинства наук в зависимости от той материи, которой они занимаются, наиболее выдающейся будет та, которую одни называют астрологией, другие — астрономией, а многие из древних — завершением математики. Сама она, являющаяся бесспорно главой благородных наук и наиболее достойным занятием свободного человека, опирается почти на все математические науки. Арифметика, геометрия, оптика, геодезия, механика и все другие имеют к ней отношение.
И так как цель всех благородных наук — отвлечение человека от пороков и направление его разума к лучшему, то больше всего может сделать астрономия вследствие представляемого ею разуму почти невероятно большого наслаждения. Разве человек, прилепляющийся к тому, что он видит построенным в наилучшем порядке и управляющимся божественным изволением, не будет призываться к лучшему после постоянного, ставшего как бы привьикой созерцания этого и не будет удивляться творцу всего, в ком заключается все счастье и благо? И не напрасно сказал божественный псалмопевец, что он наслаждается творением божьим и восторгается делами рук его! Так неужели при помощи этих средств мы не будем как бы на некоей колеснице приведены к созерцанию высшего блага? А какую пользу и какое украшение доставляет астрономия государству (чтобы не говорить о бесчисленных удобствах для частных людей)! Это великолепно заметил Платон, который в седьмой книге «Законов» высказывает мысль, что к полному обладанию астрономией нужно стремиться по той причине, что при ее помощи распределенные по порядку дней в месяцах и годах сроки празднеств и жертвоприношений делают государство живым и бодрствующим. И если, говорит он, кто-нибудь станет отрицать необходимость для человека восприятия этой одной из наилучших наук, то он будет думать в высшей степени неразумно. Платон считает также, что никак не возможно кому-нибудь сделаться или назваться божественным, если он не имеет необходимых знаний о Солнце, Луне и остальных светилах.
И вместе с тем скорее божественная, чем человеческая, наука, изучающая высочайшие предметы, не лишена трудностей. В области ее основных принципов и предположений, которые греки называют «гипотезами», в особенности многие разногласия мы видели у тех, кто начал заниматься этими гипотезами, вследствие того, что спорящие не опирались на одни и те же рассуждения. Кроме того, течение светил и вращение звезд может быть определено точным числом и приведено в совершенную ясность только с течением времени и после многих произведенных ранее наблюдений, которыми, если можно так выразиться, это дело из рук в руки передается потомству.
Действительно, хотя Клавдий Птолемей Александрийский, стоящий впереди других по своему удивительному хитроумию и тщательности, после более чем сорокалетних наблюдений завершил созидание всей этой науки почти до такой степени, что, как кажется, ничего не осталось, чего он не достиг бы, мы все-таки видим, что многое не согласуется с тем, что должно было бы вытекать из его положений; кроме того, открыты некоторые иные движения, ему неизвестные. Поэтому и Плутарх, говоря о тропическом солнечном годе, заметил: «До сих пор движение светил одерживало верх над знаниями математиков». Если я в качестве примера привожу этот самый год, то я полагаю, что всем известно, сколько различных мнений о нем существовало, так что многие даже отчаивались в возможности нахождения точной его величины.
Если позволит Бог, без которого мы ничего не можем, я попытаюсь подробнее исследовать такие же вопросы и относительно других светил, ибо для построения нашей теории мы имеем тем более вспомогательных средств, чем больший промежуток времени прошел от предшествующих нам создателей этой науки, с найденными результатами которых можно будет сравнить те, которые вновь получены также и нами. Кроме того, я должен признаться, что многое я передаю иначе, чем предшествующие авторы, хотя и при их помощи, так как они первые открыли доступ к исследованию этих предметов.
О том, что мир сфериченПрежде всего мы должны заметить, что мир является шарообразным или потому, что эта форма совершеннейшая из всех и не нуждается ни в каких скрепах и вся представляет цельность, или потому, что эта форма среди всех других обладает наибольшей вместимостью, что более всего приличествует тому, что должно охватить и сохранить все, или же потому, что такую форму, как мы замечаем, имеют и самостоятельные части мира, именно Солнце, Луна и звезды; или потому, что такой формой стремятся ограничить себя все предметы, как можно видеть у водяных капель и других жидких тел, когда они хотят быть ограничены своей свободной поверхностью. Поэтому никто не усомнится, что такая форма придана и божественным телам.
О том, что Земля тоже сферичнаЗемля тоже является шарообразной, так как она со всех сторон стремится к своему центру. Однако совершенная округлость ее не сразу может быть усмотрена при наличии высоких гор и опускающихся вниз долин, хотя последние очень мало изменяют общую круглоту Земли. Это можно обнаружить следующим образом. Для путешественников, идущих откуда-нибудь к северу, полюс суточного вращения Земли понемногу поднимается вверх, в то время как южный на такую же величину опускается вниз, и в окрестности Медведиц большее количество звезд являются незаходящими, тогда как на юге некоторые уже не восходят. (С. 16-18)
Малый комментарий относительно установленных им гипотез о небесных движенияхНаши предки ввели множество небесных сфер, как я полагаю, для того, чтобы сохранить принцип равномерности для объяснения видимых движений светил. Им казалось слишком нелепым, что небесное тело в своей совершенной сферичности не будет всегда двигаться равномерно. Однако они полагали возможным, что при сложении или совместном участии нескольких правильных движений светила будут казаться по отношению к какому-либо месту движущимися неравномерно.
Этого не могли добиться Калипп и Евдокс, старавшиеся получить решение посредством концентрических кругов и ими объяснить все особенности движений планет, не только относящиеся к видимым круговращениям звезд, но даже и те, когда, как нам кажется, планеты то поднимаются в верхние части неба, то опускаются, чего, конечно, концентричность никак не может допустить. Поэтому было сочтено лучшим мнение, что это можно воспроизвести при помощи эксцентрических кругов и эпициклов, с чем, наконец, большая часть ученых и согласилась.
Однако все то, что об этом в разных местах дается Птолемеем и многими другими, хотя и соответствует числовым расчетам, но тоже возбуждает немалые сомнения. Действительно, все это оказалось достаточным только при условии, что надо выдумать некоторые круги, называемые эквантами. Но тогда получалось, что светило двигалось с постоянной скоростью не по несущей его орбите и не вокруг собственного ее центра. Поэтому подобные рассуждения не представлялись достаточно совершенными и не вполне удовлетворяли разум.
Так вот, обратив на это внимание, я часто размышлял, нельзя ли найти какое-нибудь более рациональное сочетание кругов, которым можно было бы объяснить все видимые неравномерности, причем каждое движение само по себе было бы равномерным, как этого требует принцип совершенного движения. Когда я приступил к этой весьма, конечно, трудной и почти неразрешимой задаче, то у меня все же появилась мысль, как этого можно добиться при помощи меньшего числа сфер и более удобных сочетаний по сравнению с тем, что было сделано раньше, если только согласиться с некоторыми нашими требованиями, которые называют аксиомами. Они следуют ниже в таком порядке.
- Предыдущая
- 158/305
- Следующая
