Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Об идолах и идеалах - Ильенков Эвальд Васильевич - Страница 36
И воспитать математика, человека, умеющего мыслить в области математики, далеко не то же самое, что научить считать, вычислять, решать типовые задачи.
И ведь математика как наука ничуть не сложнее других наук, которые не кажутся столь таинственно абстрактными. В известном смысле математическое мышление даже проще, легче. В самом деле, математические «таланты» и даже «гении» развиваются в таком возрасте, который в других науках явно не дает возможности даже просто выйти на «передний край». Математика предполагает меньший и более простой «опыт» в отношении окружающего мира, чем та же политическая экономия, биология или ядерная физика. Посему в биологии, например, «гения» в пятнадцатилетнем возрасте и не встретишь.
И сравнительно малый процент способных к математическому мышлению мы получаем до сих пор вовсе не потому, что матушка-природа столь скупа на раздачу математических способностей, а совсем по другой причине. А прежде всего потому, что в сферу математического мышления мы зачастую вводим маленького человека вверх ногами, задом наперед. Потому, что с первых же дней вбиваем ему в голову иной раз такие представления о математических понятиях, которые не помогают, а, как раз наоборот, мешают ему увидеть, правильно рассмотреть окружающий его мир под непривычным для него строго-математическим углом зрения.
Способными же в итоге оказываются те дети, которые по какому-то счастливому стечению обстоятельств умудряются все-таки выглянуть в «окно», забитое досками неверных представлений. Где-то между этими досками сохраняются «щели», в которые пытливый ребенок иной раз и заглядывает. И оказывается способным…
А неверные представления об исходных математических понятиях органически связаны с теми антикварными философско-гносеологическими представлениями о понятиях вообще и об их отношениях с реальностью, с которыми научная философия давно разделалась и распрощалась.
Философско-логический анализ старой методики обучения первоклассников, которая вводила их в царство математических понятий, бесспорно подтверждает высказанное положение. В этом случае ребенку внушали просто неверное (с точки зрения самой математики) представление о числе.
Как сплошь и рядом до самого последнего времени задавалось ребенку «понятие» числа — фундаментального и самого общего основания всех его дальнейших шагов в области математического мышления?
Сначала очень натурально и наглядно рисовали мячик, рядом с ним — девочку, яблоко (или вишенку), жирную палочку (или точку), и, наконец, цифровой знак единицы.
Затем — две куклы, два мальчика, два арбуза, две точки и цифра 2. И так далее, вплоть до десяти, до предела, назначенного дидактикой для первоклассника сообразно с его возрастными («природными») возможностями…
Предполагалось, что, усвоив все это, ребенок усвоит счет, а вместе с ним «понятие» числа.
Умение считать он, действительно, таким образом усваивал. Но вот что касается «понятия» числа, то вместо него ребенок незаметно для себя проглатывал совершенно абстрактное представление о числе, такое представление, которое даже хуже тех обывательских, донаучных представлений, с которыми он приходит в школу.
Если бы первоклассник обладал достаточными аналитическими способностями, то на вопрос: «Что такое число?» он ответил бы примерно следующее. Число есть название, выражающее то абстрактно-общее, что имеют между собой все единичные вещи. Исходная цифра натурального ряда — название единичной вещи, двойка — двух единичных вещей и т. д. Единичная же вещь — это то, что я вижу в пространстве как резко и отчетливо отграниченное, «вырезанное» контуром из всего остального, окружающего ее, мира, — будь то контур мячика или шагающего экскаватора, девочки или тарелки с супом. Недаром, чтобы проверить, усвоил ли ребенок школьную премудрость, ему показывали предмет (безразлично какой) и спрашивали: «Сколько?», желая услышать в ответ — один (одна, одно)». А далее — два, три и т. д.
Но ведь любой мало-мальски грамотный в математике человек рассмеется, услышав такое объяснение числа, по праву расценит его как детски наивное и неверное. А как же иначе, если частный случай числового выражения действительности ребенок вынужден усваивать как самый общий, как представление о числе вообще.
В итоге же получалось, что уже ближайшие шаги в сфере математического мышления, которые он неуверенно делает под присмотром учителя, заводят его в тупик и сбивают с толку. Скоро обнаруживалось, что единичный предмет, который ему показывают, вовсе не обязательно называется словечком один, а может быть и два (две половинки), и три, и восемь, и вообще сколько угодно и что число 1 есть все что угодно, но только не название единичной, чувственно воспринимаемой «вещи». А чего же? Какую реальность обозначают числовые знаки?
Теперь бессильным окажется даже ребенок, обладающий самыми тонкими и гениальными аналитическими способностями… И потому только, что в его голове отложились два взаимоисключающих представления о числе, которые он никак не соотносит, не «опосредствует». Они просто находятся рядом, как два стереотипа, что очень легко выявить; столкнув их в «сшибке», в открытом противоречии.
Покажите ребенку игрушечный поезд, сцепленный из трех вагонов и паровозика, и спросите: сколько? Один (поезд)? Четыре (составных части поезда)? Три и один (паровоз и вагоны)? Шестнадцать (колес)? Шестьсот пятьдесят четыре (грамма)? Три пятьдесят (цена игрушки в магазине)? Одна вторая (комплекта)?
Здесь обнаруживается все коварство абстрактного вопроса «сколько?», на который ранее приучили давать бездумно абстрактный ответ, не уточняя — «чего?»… И даже отучали от желания уточнить, если оно было у ребенка, как от желания, которое надо оставить перед входом в храм математического мышления, где — в отличие от мира его непосредственного опыта — и вкусная конфета и отвратительная ложка касторки значат «одно и то же» — а именно: одно, единицу…
Такая абстракция, на которую ребенка «натаскивали» с первых шагов обучения счету, приучая начисто отвлекаться от всякой качественной определенности «единичных вещей», приучая к мысли, что на уроках математики качество вообще нужно забыть во имя чистого количества, во имя числа, — для понимания ребенка непосильна. Он ее может только принять на веру; так, мол, уж принято в математике, в противоположность реальной жизни, где конфету от касторки он все же продолжает различать…
Предположим, что ребенок твердо усвоил вышеразъясненное представление о числе и счете, и что три арбуза — «одно и то же», что и три пары ботинок, «три» без дальнейших разъяснении. Но тут ему сообщают новую тайну: три аршина нельзя складывать с тремя пудами; это — «не одно и то же»; и что прежде, чем складывать, располагать в один счетный ряд, надо предварительно убедиться, что имеешь дело с одноименными (однокачественными) вещами; что бездумно складывать и вычитать можно только «неименованные» числа, а именованные — нельзя… Еще один стереотип, причем прямо противоположный. Какой же из них следует применить, «включить в данном случае?
Почему в одном случае надо и можно «складывать» двух мальчиков с двумя вишенками, а в другом — не надо и нельзя? Почему в одном случае они «одно и то же», а именно: единичные чувственно воспринимаемые вещи без дальнейших разъяснении, а в другом — «не одно и то же», разноименные, разнородные (хотя и тоже единичные) вещи?
В самом деле, почему?
Учитель от объяснений воздерживается. Он просто показывает — на наглядных примерах — что в одном случае надо действовать так, а в другом — этак. Тем самым ребенку внушается два готовых абстрактнейших представления о числе и не дается его конкретного понятия, то есть понимания…
Что-то подозрительно похожа описанная дидактика на принципы обучения «уму», высмеянные мудрой народной сказкой.
— «Дурень, а дурень, чем на печке лежать — пошел бы, потерся около людей, ума набрался!»
Послушный и прилежный дурень увидел мужиков, что таскали мешки с пшеницей, и ну тереться то об одного, то о другого…
- Предыдущая
- 36/60
- Следующая