Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис - Страница 81
В настоящее время и ударные, и вулканические явления рассматриваются как наиболее вероятные возможные причины массовых вымираний.
Глава 9
Частота столкновений малых тел с Землей и оценки рисков
Можно считать курьезом, что научное сообщество ревностно изучает далекие галактики и в то же время игнорирует любую возможность серьезного столкновения Земли с космическими объектами. Для меня это типичный пример амнезии.
Ф. Хойл9.1. Статистика метеоритных кратеров на небесных телах
Сталкиваясь с планетными телами, малые тела образуют ударные кратеры, популяция которых создает как бы отпечаток популяции малых тел Солнечной системы. Распределение по размерам ударных кратеров на планетных телах с твердой поверхностью является одной из наиболее легко измеряемых (и весьма сложной в интерпретации) характеристик эволюции Солнечной системы. С точки зрения проблемы астероидно-кометной опасности, наблюдаемая частота встречаемости ударных кратеров различного размера является необходимым дополнением к астрономическим наблюдениям малых тел, которые могут столкнуться с Землей.
При известных скоростях столкновения с различными планетными телами (т. е. планетами, их спутниками и другими малыми телами) и знании законов подобия, связывающих размеры ударных кратеров и параметры тел (ударников), их образующих, данные по частоте встречаемости кратеров и ударников могут быть взаимно дополнены. Процедура такого сравнения была разработана в 1960-х гг., и с тех пор постоянно совершенствуется [Hartmann et al., 1981]. Ниже излагаются основные данные о частоте встречаемости кратеров, а также подходы к их интерпретации.
Лунные кратеры. Измерения распределения по размерам лунных кратеров было начато еще по телескопическим наблюдениям и фотографиям [Öpik, 1960]. Уже тогда была выявлена главная черта распределения кратеров по размерам — их число N убывает с ростом диаметра кратера D примерно как степенная функция диаметра. Поскольку статистика кратеров, как и многих других объектов, может быть представлена в различных формах, необходимо привести главные из них. Простейшим способом является кумулятивный подсчет числа кратеров N(> D) с размером, больше данного диаметра D.
Тогда типичное распределение ударных кратеров по размерам можно представить в виде
где S — площадь, на которой измерено количество кратеров, b — показатель степенного закона (обычно в диапазоне от 1,5 до 4), A — коэффициент пропорциональности. Кумулятивная форма представления удобна своей простотой, но зачастую приводит к недоразумениям, когда реальный закон распределения отклоняется от простой степенной зависимости.
Инкрементальный способ представления статистики кратеров состоит в подсчете числа кратеров N(Dav), размеры которых заключены в заданном диапазоне размеров D = D2 × D1 при среднем размере, определяемом как среднее арифметическое Dav = (D1 + D2)/2 или среднее геометрическое Dav = (D1 × D2)1/2. Такая статистика описывается выражением
где показатель степенной функции по модулю на единицу больше, чем в кумулятивном законе. Строго говоря, коэффициент пропорциональности B должен быть величиной отрицательной (число кратеров убывает с ростом их размера), однако для практических нужд его практически всегда используют как положительную величину.
После накопления большого опыта в практическом подсчете статистики лунных и марсианских кратеров специально созданная рабочая группа НАСА опубликовала практические рекомендации по стандартизации представления статистики кратеров в инкрементальном виде [Arvidson et al., 1979]. Было рекомендовано, как правило, использовать для инкрементального представления данных не равные интервалы диаметров, а логарифмически равные интервалы, когда отношение D2/D1 является величиной постоянной и равной в стандартном случае по умолчанию √2. В случае постоянства отношения D2/D1 показатель степени в инкрементальном законе будет таким же, как и в кумулятивном законе. Поскольку главным сторонником подобного представления был известный американский исследователь У. Хартманн (W. K. Hartmann), мы будем обозначать число кратеров в интервалах с постоянным D2/D1 = √2 как NH:
(заметим, что сам Хартманн иногда использовал не средний диаметр Dav, а меньший диаметр интервала измерений D1; интересующийся читатель должен быть настороже).
Для представления инкрементальных данных рекомендуется использовать линейку граничных диаметров интервалов, один из которых фиксирован при D = 1 км. Тогда интервалы диаметров в сторону больших размеров составляют 1,41, 2, 2,83, 4 км и т. д., а в сторону меньших размеров — 707, 500, 353, 250 м и т. д., при стандартном отношении D2/D1 = √2.
R-представление. Кумулятивное и инкрементальное представления данных для интервалов диаметров кратеров более одного порядка величины вызывают трудности при графическом представлении — диапазон значений величины N изменяется на три порядка (при b— 3) при изменении D на порядок величины. Поэтому для графического представления данных рабочая группа НАСА [Arvidson et al., 1979] стандартизировала так называемое R-представление (от англ. Relative — относительный). При этом круто падающая зависимость N(H) представляется не в абсолютных значениях, а нормируется относительно базовой степенной функции, за которую принята функция D-3. Таким образом, R-представление изображает отклонение распределения по размерам от простой круто падающей степенной функции:
Согласно стандартной модели, статистическая ошибка подсчета числа кратеров N в заданном интервале диаметров оценивается как ±√N. Этот интервал обычно обозначается на рисунках отрезком вертикальной линии. Для R-представления ошибка представляется как интервал от R(N + √N) до R(N — √N). После формальных (но необходимых) объяснений терминологии можно перейти к описанию собственно наблюдательных данных о распределении лунных кратеров по размерам. При этом нужно принимать во внимание два важных обстоятельства: 1) уничтожение части кратеров планетарными геологическими процессами; 2) достижение предельной (равновесной, насыщенной) плотности кратеров, определяемой как отношение их числа к площади изучаемой поверхности. Стирание кратеров вулканизмом было характерно для Луны в течение первых 2,5 млрд лет ее истории [Hiesinger et al., 2003; Hiesinger et al., 2000]. В последние 2 млрд лет ландшафт Луны изменялся в основном за счет образования новых ударных кратеров. Однако на Земле и Марсе наличие атмосферы и гидросферы делает уничтожение кратеров важным конкурентом процесса их образования. Здесь наблюдаемое число кратеров ниже некоторого характерного размера остается постоянным за счет равенства скоростей образования новых и стирания старых кратеров. Поэтому необходимо различать статистику подсчитанных кратеров и статистику общего количества кратерообразующих ударов. В идеальной ситуации некий геологический процесс полностью обновляет участок поверхности, на котором начинают стохастически накапливаться новые ударные кратеры. В этом случае наблюдатель фиксирует все кратеры (и их размеры), а статистика распределения кратеров по размерам соответствует (с учетом определенных законов подобия) статистике распределения по размерам малых тел Солнечной системы. В таких условиях полученное распределение по размерам называют производящей функцией.
- Предыдущая
- 81/117
- Следующая