Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Квантовый ум. Грань между физикой и психологией - Минделл Арнольд - Страница 39
отсюда z = R[cos(θ) + isin(θ)] = Reiθ.
3. Приведенное выше уравнение z = K[cos(θ) + isin(θ)] = Кeiθ означает, ни много ни мало, что z имеет периодическое поведение, поскольку при возрастании угла 9 cos(θ) и isin(θ) претерпевают периодические волнообразные изменения. Иными словами, имеются две волны – одна действительная, а другая мнимая, или не совпадающая по фазе с действительной на 900. См. рис. 8.5
Рис. 8.5. Периодическое движение x и у
С показательными функциями (экспонентами) иметь дело легче, чем с синусами и косинусами. Поэтому в физике для представления колебаний постоянно используются комплексные числа в форме ei(θ1+ θ2) ei(θ1+ θ2). Для представления колебаний, которые можно измерять, например качания маятника, используется только действительная часть числа z. Мнимым элементом пренебрегают.Хорошее элементарное обсуждение математики и волн для ученых можно найти в фейнмановских «Лекциях по физике» (том I, гл. 23).Еще один интересный аспект действительных и мнимых чисел состоит в том, что действительный и мнимый аспекты z подобны двум разным измерениям реальности, двигающимся вместе, но не вполне вместе. Вообще, если действительная и мнимая оси вращаются, мы можем видеть, что ось мнимого числа Y всегда отстает от действительной оси X на угол 90°, как показано на рис. 8.6.
Рис. 8.6. Вращение комплексной плоскости на 90 градусов
По аналогии можно сказать, что воображаемый мир всегда находится в другом измерении по отношению к реальному или, наоборот, что при возрастании 9 оси X и Y выглядят как две волны – одна впереди, а другая чуть позади, – как если бы они были барабанами, звук которых отдается эхом «бум бум», пауза, «бум бум», пауза, «бум бум» и так далее. Две волны, не совпадающие по фазе друг с другом, графически показаны на рисунке выше. Это аналогично ритму музыки на заднем плане нашего переживания.
В одной из последующих глав я покажу, что в квантовой физике периодическое поведение комплексных чисел (волновое уравнение) используется для описания невидимого состояния материальной системы. Состояние физической системы, например маленького шарика, элементарной частицы или человека, в каждой точке пространства и времени может быть представлено комплексным числом.
4. Если мы проводим линию R из центра к точке a + ib, то она выглядит как путь между этим комплексным числом и центром комплексной плоскости. См. рис. 8.7.
Рис. 8.7. Линия R на комплексной плоскости Какова длина R? R представляет собой длинную сторону треугольника с двумя другими сторонами а и b. R – это длинная сторона (гипотенуза), b – вертикальная сторона (катет) и a – горизонтальная сторона (катет).
Рис. 8.8. R – это часть прямоугольного треугольника
Греческий ученый Евклид заимствовал информацию у вавилонян и открыл, как можно было бы измерить R, зная а и b. Оказывается, что если есть две стороны треугольника, которые перпендикулярны друг другу, формула Евклида говорит, что квадрат длинной стороны, R, равен сумме квадратов меньших сторон. То есть
R2 = а2 + b2
это формула Евклида для прямоугольных треугольников[13].
Таким образом, умножение комплексного числа на его конъюгат дает нам R – расстояние точки от центра.
5. Помножим а + ib на а – ib. Получается
а2 – iab + iab – i2b2.
Если помнить, что i2 = -1 и заметить, что -mb и +rnb взаимно вычитаются, то остается
(а + ib) х (а – ib) = а2 + b2.
Математики называют выражение (а + ib^ifl – ib) абсолютным квадратом числа (а + ib). Например, если а = 3 и b = 4, то абсолютный квадрат комплексного числа 3 + 4i будет равен (3 + 4i)x(3 – 4i) = 32 + 42 или 9 + 16 или 25. Это действительное число без всякой примеси мнимых чисел.
6. С математической точки зрения, процесс конъюгации похож на возведение в квадрат, но чуть-чуть отличается от него. Возведение комплексных чисел в квадрат дает другие такие числа, в то время как конъюгация и получение абсолютного значения дает действительные числа!
Вот как это получается. Если возводим комплексное число типа а + ib в квадрат, то умножаем его само на себя и получаем комплексное число, то есть сочетание действительного и мнимого чисел, поскольку:
(а + ib) х (а + ib) = а2 + аА + аА – b2 = а2 + 2аА – b2.
Но для того чтобы получить абсолютное значение комплексного числа а + ib, мы конъюгируем его, или умножаем его на его конъюгат:
(а + ib) х (а – ib) = а2 – mb + mb + -i2b2,
но поскольку i2 = -1, мы получаем
(a + ib) х (a – ib) = a2 + b2,
как в примечании 5. Таким образом, получение абсолютного значения числа похоже на возведение числа в квадрат, за исключением того, что абсолютное значение не содержит никаких мнимых чисел. В отличие от конъюгации, возведение комплексного числа в квадрат дает
a2 + 2aib —Ь2,
в то время как абсолютное значение, получающееся в результате конъюгации, это a2 + b2 – действительное число, поскольку в нем нет никаких i.
9. Единый мир в сновидении Паули
Оно (мнимое число) делает то инстинктивное или спонтанное, интеллектуальное или рациональное, духовное или сверхъестественное, о чем вы говорите, единым или монадическим целым, которое не могут представлять числа без i.
Внутреннее видение учительницы музыки из фантазии Вольфганга ПаулиДавайте передохнем и оглянемся на путь, который мы прошли в нашем путешествии до сих пор. После обзора знакомой территории мы двинемся дальше в рассмотрении комплексных чисел с помощью сна-фантазии нобелевского лауреата по физике Вольфганга Паули.
Обзор
Математика – это не только абстрактный инструмент, но и личное переживание. Всякий раз, когда вы видите сон или работаете со своими фантазиями, вы занимаетесь математикой точно так же, как когда вы считаете своих овец на пастбище.
Счет – это абстракция процесса осознания взаимодействия, который включает в себя замечание, маргинализацию, маркирование и развертывание. Счет сопоставляет события с данной стандартной совокупностью, например пальцами рук.
Общепринятая реальность (ОР) относится к реальности данного сообщества, выражаемой с помощью согласованного словесного и несловесного языка, включая числа и жесты.
- Предыдущая
- 39/45
- Следующая