Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Энергия, секс, самоубийство - Ленцман Наталья Валерьевна - Страница 52
Так налагает ли «распределительная сеть» ограничения на организм? Эта сеть, несомненно, важна и, возможно, фрактальна, но есть серьезные основания сомневаться в том, что она ограничивает уровень метаболизма. На самом деле все может быть наоборот. Известны по крайней мере несколько случаев, когда потребности контролируют сеть. Спрос и предложение — это что-то из области экономики, но в данном случае их соотношение определяет разницу между эволюционной траекторией, ведущей к усложнению, и миром, навечно увязшим в бактериальном болоте. Если с увеличением размера клетки и организмы становятся эффективнее, то за это увеличение ждет награда, поощряющая к дальнейшим свершениям. Допустим, размер и сложность и правда идут рука об руку, и награда за увеличение — это и награда за усложнение. Но почему жизнь склонна увеличиваться и усложняться, если увеличение размера сулит переход на продуктовые карточки? За большой размер и так приходится расплачиваться увеличением числа генов и улучшением организации, но если фрактальная модель верна, большие организмы обречены еще и на вечный обет нестяжания. Так зачем же стремиться расти?
Универсальная константа под вопросом
Есть много причин сомневаться в справедливости фрактальной модели, но одна из самых серьезных — это обоснованность самого метаболического закона трех четвертей. Главное достоинство фрактальной модели в том, что из основных принципов она выводит взаимоотношение между уровнем метаболизма и массой. На основании только лишь фрактальной геометрии ветвящихся распределительных сетей в трехмерных телах она предсказывает, что уровень метаболизма животных, растений, грибов, водорослей и одноклеточных организмов должен быть пропорционален их массе в степени ? (0,75). С другой стороны, если новые эмпирические данные покажут, что показатель степени все-таки не равен 0,75, то фрактальная модель столкнется с проблемой. Ответ, который она дает, не соответствуют эмпирическим данным. Случалось, что расхождения теории с практикой приводили к рождению новой, немыслимой прежде теории (вспомним, как необъяснимые с точки зрения ньютоновской физики факты указали дорогу к теории относительности), но случалось, конечно, что такие расхождения приводили к краху исходной модели. В нашем случае фрактальная геометрия может объяснить степенную зависимость в биологии только в том случае, если эта зависимость действительно существует, то есть если показатель степени 0,75 действительно является «универсальной константой».
Я уже упоминал, что Альфред Хойзнер и другие исследователи на протяжении нескольких десятков лет пытались оспорить метаболический закон трех четвертей, утверждая, что предложенный Максом Рубнером показатель степени ? ближе к истине. Развязка наступила в 2001 г., когда физики Питер Доддс, Дэн Ротман и Джошуа Вайтц — все они тогда работали в Массачусетском технологическом институте (Кембридж, США) — решили внимательно приглядеться к метаболическому закону трех четвертей.
Они пересмотрели исходные данные Клайбера и Броди, а также данные из других публикаций на эту тему, пытаясь понять, насколько они достойны доверия.
Как это часто бывает в науке, прочный базис при внимательном рассмотрении оказался зыбкой трясиной. Данные Клайбера и Броди действительно давали показатель степени ? (точнее говоря, 0,73 и 0,72 соответственно), но их выборки были очень маленькими (всего 13 млекопитающих в случае Клайбера). Повторный анализ более поздних данных по нескольким сотням видов, как правило, искомых трех четвертей не давал. У птиц, например, а также у мелких млекопитающих он оказался ближе к ?. Как ни странно, показатель степени часто оказывался несколько выше у крупных млекопитающих, на чем и был основан исходный результат ?. Если провести одну прямую линию через весь набор данных, охватывающих пять или шесть порядков величины, то ее наклон действительно составляет примерно ?. Но провести одну прямую можно только на основании допущения, что универсальное соотношение существует. А если нет? В этом случае данные лучше аппроксимируются двумя разными линиями, каждая со своим углом наклона. Тогда получается, например, что по каким-то причинам большие млекопитающие просто отличаются от маленьких[50].
Все это может показаться довольно путаным. Так есть ли какие-нибудь серьезные эмпирические факты, свидетельствующие о существовании точной универсальной константы? В общем, нет. Если заняться составлением графиков по группам, то выясняется, что в случае рептилий показатель степени составляет примерно 0,88, то есть наклон прямой выражен сильнее. У сумчатых животных он составляет около 0,60, то есть прямая более пологая. Часто цитируемые данные по одноклеточным, полученные А. М. Хеммингсеном в 1960 г., вообще оказались миражом. Они внесли большой вклад в представление об универсальности закона трех четвертей, но при ближайшем рассмотрении выяснилось, что у разных групп одноклеточных этот показатель варьирует от 0,60 до 0,75. Доддс, Ротман и Вайтц тоже пришли к выводу, что «закон трех четвертей <…> для одноклеточных организмов, в общем, не выглядит убедительным». Они также обнаружили, что водные беспозвоночные и водоросли характеризуются показателем степени от 0,30 до 1,0. Короче говоря, единая универсальная константа не находит подтверждения в отдельных типах организмов, а проступает только при рассмотрении всех типов организмов и многих порядков величины. Тогда наклон прямой действительно составляет примерно 0,75.
Вест и его коллеги утверждают, что единство на таком высоком уровне показывает нам универсальную значимость фрактальных распределительных сетей, а несоответствия в пределах отдельных типов животных — это малозначащие помехи, вроде сопротивления воздуха в случае закона всемирного тяготения. Может, они и правы, но нужно, по крайней мере, допустить возможность того, что «универсальная» константа — это всего лишь статистический артефакт, получаемый при проведении прямой через разные группы, ни одна из которых по отдельности не соответствует общему правилу. Если бы на существование универсального закона указывала хорошая теоретическая база, о нем еще можно было бы подумать всерьез, но складывается впечатление, что фрактальная модель весьма сомнительна и с теоретической точки зрения.
Пределы сетевых ограничений
Есть обстоятельства, когда ясно, что распределительные сети действительно накладывают ограничения на функцию. Например, сеть микротрубочек эффективно распределяет молекулы в пределах отдельной клетки, но, возможно, ограничивает ее максимальный размер. В какой-то момент она перестает справляться, и в действие должна вступить специализированная сердечно-сосудистая система. Трахейная система, состоящая из слепо заканчивающихся полых трубочек, которые доставляют кислород отдельным клеткам, накладывает серьезное ограничение на максимальный размер насекомых (за что мы должны быть вечно благодарны природе). Интересно, что высокое содержание кислорода в воздухе в каменноугольный период, возможно, несколько опустило планку, что привело к возникновению стрекоз размером с чаек (я обсуждал это в книге «Кислород»), Распределительная система может влиять и на минимальный размер. Например, сердечно-сосудистая система землероек, скорее всего, минимально возможная у млекопитающих: если аорта станет еще меньше, энергия пульса будет рассеиваться, и сопротивление, связанное с вязкостью крови, будет препятствовать ее свободному потоку.
Если отвлечься от этих случаев, то ограничивает ли распределительная сеть уровень доставки кислорода и питательных веществ так, как это предсказывает фрактальная модель? Скорее нет. Дело в том, что фрактальная модель увязывает размер тела с уровнем метаболизма в состоянии покоя. При этом учитывается потребление кислорода в состоянии покоя, когда животное спокойно сидит — сытое, но уже в основном переварившее пищу. Поэтому это довольно искусственный термин. Даже мы проводим в таком состоянии довольно мало времени, а дикие животные — и того меньше. В состоянии покоя наш обмен веществ не может быть ограничен доставкой кислорода и питательных веществ. Будь это так, мы вообще не могли бы встать и побежать, а только бы тихо сидели на месте. Даже на переваривание пищи у нас не хватило бы сил. А вот максимальный уровень метаболизма, определяемый как предел аэробной производительности, несомненно, ограничен скоростью доставки кислорода. Мы быстро начинаем хватать воздух ртом, а в мышцах накапливается молочная кислота — чтобы справиться с возросшими потребностями, они переходят к брожению.
вернуться50
Авторы еще одного повторного анализа данных — Крейг Вайт и Роджер Сеймур (Аделаидский университет) — в 2003 г. пришли к похожему выводу.
- Предыдущая
- 52/101
- Следующая