Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Мир астрономии. Рассказы о Вселенной, звездах и галактиках - Мухин Лев Михайлович - Страница 52
Отметим, что, если масса ядра звезды заключена между 1,2 M и 2,4 M, конечным «продуктом» эволюции такой звезды должна быть нейтронная звезда. При массе ядра менее 1,2 M эволюция приведет в конце концов к рождению белого карлика.
Что же представляет собой нейтронная звезда? Массу ее мы знаем, знаем также, что она состоит в основном из нейтронов, размеры которых также известны. Отсюда легко определить радиус звезды. Он оказывается близким к… 10 километрам!
Сравнительные размеры нейтронной звезды и современного города.
Определить радиус такого объекта действительно несложно, но очень трудно наглядно представить себе, что массу, близкую к массе Солнца, можно разместить в объекте, диаметр которого чуть больше длины Профсоюзной улицы в Москве. Это гигантская ядерная капля, сверхядро элемента, который не укладывается ни в какие периодические системы и имеет неожиданное, своеобразное строение.
Вещество нейтронной звезды обладает свойствами сверхтекучей жидкости! В этот факт на первый взгляд трудно поверить, но это так. Сжатое до чудовищных плотностей вещество напоминает в какой-то мере жидкий гелий. К тому же не следует забывать, что температура нейтронной звезды — порядка миллиарда градусов, а, как мы знаем, сверхтекучесть в земных условиях проявляется лишь при сверхнизких температурах.
Правда, для поведения самой нейтронной звезды температура особой роли не играет, поскольку устойчивость ее определяется давлением вырожденного нейтронного газа — жидкости.
Строение нейтронной звезды во многом напоминает строение планеты. Помимо «мантии», состоящей из вещества с удивительными свойствами сверхпроводящей жидкости, такая звезда имеет тонкую твердую кору толщиной примерно в километр. Предполагается, что кора обладает своеобразной кристаллической структурой. Своеобразной потому, что в отличие от известных нам кристаллов, где строение кристалла зависит от конфигурации электронных оболочек атома, в коре нейтронной звезды атомные ядра лишены электронов. Поэтому они образуют решетку, напоминающую кубические решетки железа, меди, цинка, но, соответственно при неизмеримо более высоких плотностях. Далее идет мантия, о свойствах которой мы уже говорили.
В центре нейтронной звезды плотности достигают 1015 граммов в кубическом сантиметре. Другими словами, чайная ложка вещества такой звезды весит миллиарды тонн. Предполагается, что в центре нейтронного монстра происходит непрерывное образование всех известных в ядерной физике, а также еще не открытых экзотических элементарных частиц.
Нейтронные звезды довольно быстро остывают. Оценки показывают, что за первые десять — сто тысяч лет температура падает от нескольких миллиардов до сотен миллионов градусов. Нейтронные звезды быстро вращаются, и это приводит к целому ряду очень интересных следствий. Кстати говоря, именно малые размеры звезды позволяют ей при быстром вращении оставаться целой. Будь ее диаметр не 10, а, скажем, 100 километров, она была бы просто разорвана центробежными силами.
Мы уже говорили об интригующей истории открытия пульсаров. Сразу же была высказана мысль, что пульсар — быстро вращающаяся нейтронная звезда, поскольку из всех известных звездных конфигураций лишь она одна могла бы остаться устойчивой, вращаясь с большой скоростью. Именно изучение пульсаров позволило прийти к замечательному выводу о том, что открытые «на кончике пера» теоретиками нейтронные звезды действительно существуют в природе и возникают они в результате вспышек сверхновых. Трудности их обнаружения в оптическом диапазоне очевидны, поскольку из-за малого диаметра большинство нейтронных звезд нельзя увидеть в самые мощные телескопы, хотя, как мы видели, здесь есть и исключения — пульсар в Крабовидной туманности.
Итак, астрономы открыли новый класс объектов — пульсары, быстро вращающиеся нейтронные звезды. Возникает естественный вопрос: что является причиной столь быстрого вращения нейтронной звезды, почему, собственно говоря, она должна крутиться вокруг своей оси с огромной скоростью?
Причина этого явления проста. Мы хорошо знаем, как может увеличить скорость вращения фигурист, когда прижимает руки к телу. При этом он использует закон сохранения момента количества движения. Этот закон не нарушается никогда, и именно он при взрыве сверхновой во много раз увеличивает скорость вращения ее остатка — пульсара.
Действительно, в процессе коллапса звезды ее масса (то, что осталось после взрыва) не меняется, а радиус уменьшается примерно в сто тысяч раз. Но момент количества движения, равный произведению экваториальной скорости вращения на массу и на радиус, остается прежним. Масса не меняется, следовательно, скорость должна увеличиваться в те же сто тысяч раз.
Рассмотрим простой пример. Наше Солнце довольно медленно вращается вокруг собственной оси. Период этого вращения составляет примерно 25 суток. Так вот, если бы Солнце вдруг стало нейтронной звездой, период его вращения уменьшился бы до одной десятитысячной доли секунды.
Второе важное следствие из законов сохранения состоит в том, что нейтронные звезды должны быть очень сильно намагничены. В самом деле, в любом природном процессе мы не можем просто так взять и уничтожить магнитное поле (если оно уже существует). Магнитные силовые линии навсегда связаны с обладающим прекрасной электропроводностью веществом звезды. Величина магнитного потока на поверхности звезды равна произведению величины напряженности магнитного поля на квадрат радиуса звезды. Эта величина строго постоянна. Вот почему при сжатии звезды магнитное поле должно очень сильно увеличиться. Остановимся на этом явлении несколько подробнее, поскольку именно оно обусловливает многие удивительные свойства пульсаров.
На поверхности нашей Земли можно измерить напряженность магнитного поля. Мы получим небольшую величину около одного гаусса. В хорошей физической лаборатории можно получить магнитные поля величиной в миллион гаусс. На поверхности белых карликов напряженность магнитного поля достигает ста миллионов гаусс. Вблизи черных дыр поля еще сильнее — до десяти миллиардов гаусс. Но на поверхности нейтронной звезды природа достигает абсолютного рекорда. Здесь напряженность поля может составлять сотни тысяч миллиардов гаусс. Пустота в литровой банке, содержащей внутри себя такое поле, весила бы около тысячи тонн.
Излучение пульсара.
Столь сильные магнитные поля не могут не повлиять (разумеется, в сочетании с гравитационным полем) на характер взаимодействия нейтронной звезды с окружающим веществом. Ведь мы пока еще не говорили о том, почему пульсары обладают огромной активностью, почему они излучают радиоволны. Да и не только радиоволны. На сегодняшний день астрофизикам хорошо известны рентгеновские пульсары, наблюдающиеся только в двойных системах, гамма-источники с необычными свойствами, так называемые рентгеновские барстеры.
Чтобы представить себе различные механизмы взаимодействия нейтронной звезды с веществом, обратимся к общей теории медленного изменения режимов взаимодействия нейтронных звезд с окружающей средой. Рассмотрим вкратце основные этапы такой эволюции. Нейтронные звезды — остатки вспышек сверхновых — вначале очень быстро вращаются с периодом 10–2–10–3 секунды. При таком быстром вращении звезда испускает радиоволны, электромагнитное излучение, частицы.
Одним из наиболее удивительных свойств пульсаров является чудовищная мощность их излучения, в миллиарды раз превосходящая мощность излучения звездных недр. Так, например, мощность радиоизлучения пульсара в «Крабе» достигает 1031 эрг/сек, в оптике — 1034 эрг/сек, что гораздо больше, чем мощность излучения Солнца. Еще больше излучает этот пульсар в рентгеновском и гамма-диапазонах.
- Предыдущая
- 52/66
- Следующая