Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан - Страница 64
Если вернуться к терминологии предыдущих глав, такое множество миров следует описать как мультивселенную, составленную из множества вселенных. Она будет шестой по счёту. Я буду называть её квантовой мультивселенной.
История о двух историях
Описывая, как квантовая механика может порождать множественные реальности, я использовал глагол «расщепляться». Его использовал Эверетт. Также поступал и ДеВитт. Однако я признаю, что в данном контексте этот глагол может сбивать с толку, и я колебался, стоит ли его использовать. Но всё-таки поддался искушению. В своё оправдание скажу, что иногда более эффективно взять кувалду, чтобы пробить дыру в барьере, стоящем между нами и необычной гипотезой об устройстве реальности, после чего заделать рванные края, чем аккуратно вырезать безупречное окошко, сквозь которое открывается новая перспектива. Я решил воспользоваться такой кувалдой, и теперь в этом и следующем разделах будет произведён необходимый ремонт. Некоторые идеи чуть более сложны, чем те, с которыми мы уже познакомились, и цепочка изложений чуть более длинна, чем раньше, но я призываю вас набраться терпения. Мне приходилось сталкиваться с тем, что зачастую у людей, которые что-то слышали о многомировом подходе или даже как-то с ним знакомы, было впечатление, что он основан на крайне экстравагантных умозрительных построениях. Но ничего подобного. Как я объясню позднее, многомировой подход является, в некотором смысле, наиболее консервативным способом осмысления квантовой физики, и важно понять, почему это так.
Важно понять, что физикам всегда приходится рассказывать истории с двух сторон. Одна сторона история — математическая — о том, как вселенная развивается согласно данной теории. Другая история — физическая, которая переводит абстрактные математические термины на экспериментальный язык. Вторая история описывает то, как математическая эволюция видится таким наблюдателям, как мы с вами, и, в более общем смысле, что математические символы теории говорят нам о природе реальности.{73} Во времена Ньютона эти две истории в общем и целом были идентичны, как я отмечал в главе 7, когда говорил о непосредственности и осязаемости ньютоновской «архитектуры». Каждый математический символ в уравнениях Ньютона имеет прямой и очевидный физический аналог. Символ x? О, это положение мяча. Символ υ? Скорость мяча. Однако когда мы переходим к квантовой механике, перевод математических символов в наблюдаемые явления окружающего нас мира оказывается не столь простым. Более того, используемый язык и понятия, необходимые для двух историй, становятся столь отличными, что вам требуется хорошо разобраться с каждой. Однако важно разделять, что есть что: какие идеи и описания привлекаются как часть фундаментальной математической структуры теории, а какие используются для установления связи с человеческим опытом.
Давайте послушаем эти две истории в случае многомирового подхода к квантовой механике. Вот первая из них.
Математический аппарат многомирового подхода, в отличие от копенгагенского, ясен, прозрачен и неизменен. Уравнение Шрёдингера определяет распространение во времени волн вероятности и никогда не задвигается за штору; оно всегда при деле. Уравнение Шрёдингера направляет форму волн вероятности, заставляя их с течением времени смещаться, видоизменяться и колебаться. Определяем ли мы волну вероятности частицы или совокупности частиц или рассматриваем различные ансамбли частиц, составляющие вас или ваше измерительное оборудование, уравнение Шрёдингера берёт исходную форму волны вероятности в качестве начальных данных и подобно графической программе, управляющей замысловатой экранной заставкой, выдаёт волновой профиль в любой последующий момент времени. Согласно этому подходу, именно так развивается вселенная. На этом всё. Конец истории. Точнее, конец первой истории.
Отметим, что при изложении первой истории я не использовал ни слово «расщепляться», ни понятия «множество миров», «параллельные вселенные» или «квантовая мультивселенная». Многомировой подход не нуждается в этих гипотезах. Они не играют никакой роли в фундаментальной математической структуре теории. Но, как мы сейчас увидим, эти идеи будут призваны во второй истории, когда, следуя Эверетту и его последователям, расширившим его пионерские результаты, мы изучаем, как математика объясняет нам то, что мы наблюдаем и измеряем.
Давайте начнём с простого — или настолько простого, насколько получится. Допустим, мы измеряем положение электрона, волна вероятности которого имеет один пик (рис. 8.9). (Опять-таки, не беспокойтесь о том, почему у электрона именно такая форма волны вероятности — воспринимайте это как данность.) Как я уже говорил, нам не под силу детально изложить первую историю даже такого простого измерительного процесса. Для этого потребовалось бы с помощью уравнения Шрёдингера определить, как волна вероятности, описывающая положения огромного количества частиц, составляющих вас и ваш измерительный прибор, объединяется с волной вероятности электрона и как это объединение эволюционирует во времени. Мои студенты, многие из которых весьма способные, очень часто не могут решить уравнение Шрёдингера даже для одной частицы. Вы и детектор состоите примерно из 1027 частиц. Решить математически уравнение Шрёдингера для такого большого количества составляющих практически нереально. Однако мы качественно представляем результирующую картину. При измерении положения электрона массы частиц приходят в движение. Примерно 1027 частиц монитора детектора, подобно танцорам в хорошо поставленном шоу, спешат занять свои места, чтобы разом высветить «Угол тридцать четвёртой улицы и Бродвея», а примерно такое же количество частиц в моих глазах и голове делают всё необходимое для создания чёткого восприятия сообщаемого результата. Уравнение Шрёдингера, каким бы неподъёмным ни был точный анализ для столь огромного количества частиц, описывает именно такое перемещение.
Представить наглядно это преобразование на уровне волны вероятности также невозможно. На рис. 8.9 и других ему подобных я использовал сетку из двух координатных осей, ведущих с севера на юг и с востока на запад, чтобы обозначить возможные положения одной частицы на модели Манхэттена. Значения волны вероятности в каждом положении соответствовали высоте волны. Это уже является упрощением, потому что я не использовал третью ось, положение частицы по вертикали (где находится частица — на втором этаже «Macy’s» или на пятом). Я не мог использовать вертикальную ось, потому что иначе не осталось бы осей для отображения высоты волны. Таковы ограничения нашего головного мозга и зрительной системы, которые в результате эволюции воспринимают только три пространственных измерения. Для правильного изображения волны вероятности приблизительно 1027 частиц нам потребуется ввести по три оси для каждой, чтобы математически описать каждое возможное положение, которое может занять каждая из частиц.[48] Добавление даже одной вертикальной оси на рис. 8.9 затруднит его восприятие; добавление ещё миллиарда миллиардов лишает картину вообще какого-либо смысла.
Однако очень важно иметь наглядный образ всех ключевых идей; поэтому давайте попытаемся, понимая, что результат будет далёк от совершенства. При описании волны вероятности частиц, из которых состоите вы и ваш детектор, я буду придерживаться варианта с двумя осями на плоскости, но при этом использовать непривычную интерпретацию этих осей. Грубо говоря, я буду считать, что каждая ось представляет собой огромный пучок осей, плотно сгруппированных между собой, которые символически изображают возможные положения такого же огромного количества частиц. Таким образом, волна, изображённая с помощью таких осей-пучков, будет описывать вероятности местоположений огромного набора частиц. Чтобы подчеркнуть разницу между одночастичной и многочастичной ситуациями, волна вероятности многочастичного набора будет иметь светящийся контур (рис. 8.13).
- Предыдущая
- 64/111
- Следующая