Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Трагическое послание древних - Мулдашев Эрнст Рифгатович - Страница 66
К сожалению, выяснилось, что точность определения расстояний между объектами зависит от точности его локализации на карте. Однако точных географических координат пирамид и монументов древности мы не имели, — для этого было необходимо побывать на каждом из них и с помощью «Glоbаl pоsitiоn system» определить координаты.
Тем не менее, определив очень приблизительные координаты по глобусу или карте мира, мы получили расстояния между пирамидами и монументами древности ориентировочно такие же, какие брали в расчет при наших исследованиях. Например, расстояние «Кайлас — Стоунхендж», равное 6666 км, получилось при использовании «Glоbаl pоsitiоn system» в трех вариантах: 6583 км, 6712 км и 6630 км. Но мы не имели точной привязки.
Встреча с математикамиЭту встречу по моей просьбе организовал ректор Башкирского государственного университета Харрасов Мухамет Хадисович, мой односельчанин, сам по профессии математик. Он собрал лучших математиков города Уфы у себя в кабинете, где я выступил, рассказав о наших математических концепциях и связи их с историей Земли, попросив помочь нам. Несколько нелепо выглядело представление миловидной и чересчур молодой Татьяны как автора идеи суммирования сумм. Зато Сергей Анатольевич Селиверстов и Юрий Иванович Васильев выглядели весьма солидно.
Как я и ожидал, математики не выразили восторга от наших «математических достижений» и, начав сыпать косинусами, синусами и дифференциальными уравнениями, постепенно начали сводить весь разговор к тому, что врачам лучше лечить больных, чем лезть в чужую область науки.
Юрий Иванович подтянулся к моему уху и прошептал: — Говорил же я тебе — ревнивый народ математики, ой какой ревнивый!
Ситуацию изменил Мухамет Харрасов. Пользуясь ректорским авторитетом, он произнес речь о необозримости научного познания и о том, что и дилетанты иногда делают открытия, чем остановил накатывающийся ком скептицизма.
Харрасов Мухамед ХадисовичПосле этого математики начали говорить с нами серьезно и сделали ряд рекомендаций. Они сошлись на том, что принцип суммирования сумм и в самом деле интересен с математической точки зрения, но в современной механике и физике не применяется. Применение этого принципа для анализа треугольников, образующихся при соединении пирамид и монументов древности между собой на глобусе, может дать интересные данные, значение которых, к сожалению, пока трудно осознать. Математики посоветовали произвести замеры также сферических и — хордовых треугольников на глобусе, в которых будет отображаться эллипсоидность земного шара.
Под взглядами маститых математиков Татьяна сидела, густо покраснев.
Шамиль ЦыгановСреди математиков был молодой человек с живыми глазами — Шамиль Цыганов. Именно ему маститые математики поручили заниматься нами, охарактеризовав его как очень талантливого ученого. Выяснилось, что Шамиль помимо преподавательской работы в университете занимается еще и гениальными детьми города Уфы.
Шамиль и в самом деле оказался талантливым человеком, обладающим способностью моментально схватывать суть дела и творчески развивать идею с математической точки зрения. Сразу возникло полное взаимопонимание. Шамиль показал нам у себя дома самую большую в России коллекцию моделей самолетов, которую он собирал с детства.
Вместе с Шамилем Цыгановым мы провели математический анализ треугольников, образующихся при соединении между собой пирамид и монументов древности на глобусе в пределах одной четверти земного шара. При этом каждый треугольник обсчитывался в трех вариациях:
Спрямленный треугольник— спрямленный треугольник, то есть треугольник, который получался при переносе треугольного пространства с глобуса на плоскость за счет знания длин сторон треугольника. Например, треугольник, ограниченный горой Кайлас, египетскими пирамидами и Северным полюсом, переносился с глобуса на плоскость путем вычерчивания треугольника, стороны которого в относительных единицах равны уже известным нам величинам — 6666 км, 6666 км и 4999 км. Далее производились подсчеты углов этого спрямленного треугольника и суммирование сумм их;
— хордовый треугольник получался путем высчитывания хордового расстояния каждой из сторон треугольника с учетом поправок на эллипсоидность Земли на каждом конкретном участке. Например, хорда участка «Кайлас — Северный полюс» составляла 6372 км при расстоянии по поверхности Земли 6666 км, хорда участка «египетские пирамиды — Северный полюс» — тоже 6327 км, а участка «Кайлас — египетские пирамиды» — 4860 км при расстоянии на поверхности Земли — 4999 км. В таких хордовых треугольниках также подсчитывались углы и производилось суммирование сумм;
— сферический треугольник подсчитывался только в угловом исчислении с учетом таких параметров, что 6666 км составляет 60°, 4999 км — 45° и так далее.
Хорда участка земного шара между горой Кайлас и Северным полюсомСразу оговорюсь, что сферические треугольники оказались малоинформативными в отношении суммирования сумм полученных углов, давая полный разнобой чисел. Поэтому при дальнейшем изложении материала я их не буду приводить.
Сферический треугольник «Кайлас — египетские пирамиды — Северный полюс»Зато когда мы закончили подсчеты спрямленных и хордовых треугольников, полученных при соединении на глобусе пирамид и монументов древности между собой, то удивлению нашему не было предела — все указывало на правомерность гипотезы об «антигреховной» роли пирамид и монументов древности!
Но Шамиля Цыганова удивляло еще и другое. — Вы, ребята, и сами не можете представить, что вам удалось сделать! — восклицал он. — Вы оригинальнейшим образом обыграли трагическое послание древних в виде числа «6666», переданного через высоту горы Кайлас, что у нас, математиков, появилась возможность создания точной математической модели Земли, а через эту модель можно будет математическим путем заглянуть даже в недра нашей планеты.
Когда математические расчеты были закончены, удивлению нашему не было предела— Хорошо, что не все математики ревнивые, — подал реплику Юрий Иванович.
Результаты математического анализа расположения пирамид и монументов древности на ЗемлеВсего мы рассмотрели 13 основных треугольников, образованных путем соединения пирамид и монументов древности между собой в пределах исследуемой четверти земного шара. Кроме того, мы рассмотрели еще 3 дополнительных треугольника, входящих в состав одного из основных треугольников.
Но оказалось, что каждый из основных треугольников (кроме одного) имеет… симметричную пару на противоположном конце земного шара! Поэтому имеет смысл рассматривать их попарно.
Первая пара треугольников — «Кайлас — Северный полюс — египетские пирамиды» и «Пасхи — Тазумаж — египетские пирамиды».
- Предыдущая
- 66/102
- Следующая