Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - Страница 68
ГЛАВА VIII: Типографская теория чисел
«Крабий Канон» и косвенная автореференцияВ «КРАБЬЕМ КАНОНЕ» есть три примера косвенной автореференции. Ахилл и Черепаха описывают известные им произведения искусства — и по случайному совпадению оказывается, что эти произведения построены по той же схеме, как и диалог, в котором они упоминаются. Вообразите мое удивление, когда я, автор, сам это заметил! Более того, краб описывает биологическую структуру, которая тоже имеет подобные свойства. Разумеется, можно прочитать и понять диалог, не заметив при этом, что он сделан в форме ракохода — но это было бы пониманием диалога только на одном уровне. Чтобы увидеть автореференцию, надо обратить внимание как на содержание, так и на форму диалога.
Построение Гёделя состоит из описания как формы, так и содержания строчек формальной системы, которую мы опишем в этой главе — Типографской Теории Чисел. Неожиданный поворот состоит в том, что при помощи хитроумного отображения, открытого Гёделем, форма строчек может быть описана в самой формальной системе. Давайте же познакомимся с этой странной системой, способной взглянуть сама на себя.
Что мы хотим выразить в ТТЧДля начала приведем некоторые высказывания, типичные для теории чисел; затем постараемся найти основные понятия, в терминах которых эти высказывания могут быть перефразированы. Далее эти понятия будут заменены индивидуальными символами. Необходимо заметить, что, говоря о теории чисел, мы имеем в виду только свойства положительных целых чисел и нуля (и множеств подобных чисел). Эти числа называются натуральными числами. Отрицательные числа не играют в этой теории никакой роли. Таким образом, слово «число» будет относиться исключительно к натуральным числам. Очень важно для вас, читатель, помнить о разнице между формальной системой (ТТЧ) и удобной, хотя и не очень строго определенной, старой ветвью математики — самой теорией чисел; я буду называть последнюю «Ч».
Вот некоторые типичные высказывания Ч — теории чисел:
(1) 5 — простое число.
(2) 2 не является квадратом другого числа.
(3) 1729 — сумма двух кубов.
(4) Сумма двух положительных кубов сама не является кубом.
(5) Существует бесконечное множество простых чисел.
(6) 6 — четное число.
Кажется, что нам понадобится символ для каждого из таких понятий, как «простое число», «куб» или «положительное число» — однако эти понятия, на самом деле, не примитивны. Например, «простота» числа зависит от его множителей, которые, в свою очередь, зависят от умножения. Кубы также определяются в терминах умножения. Давайте постараемся перефразировать те же высказывания в более элементарных терминах.
(1) Не существует чисел а и b больших единицы, таких, что 5 равнялось бы а×b
(2) Не существует такого числа b, что b×b равнялось бы 2.
(3) Существуют такие числа b и с, что b×b×b + с×с×с равняется 1729.
(4) Для любых чисел b и с больше нуля не существует такого числа а, что а×а×а = b×b×b + с×с×с.
(5) Для каждого а существует b, большее, чем а, такое, что не существует чисел c и d, больших 1 и таких, что b равнялось бы c×d.
(6) Существует число e такое, что 2×e равняется 6.
Этот анализ продвинул нас на пути к основным элементам языка теории чисел. Очевидно, что некоторые фразы повторяются снова и снова:
для всех чисел b существует число b, такое, что больше чем равняется умноженное на О, 1, 2,…
Большинство таких фраз получат индивидуальные символы. Исключением является «больше чем», которое может быть упрощено еще. Действительно, высказывание «а больше b» становится:
существует число с отличное от 0, такое, что а = b + с.
Символы чиселМы не будем вводить отдельного символа для каждого из натуральных чисел. Вместо этого у нас будет очень простой способ приписать каждому натуральному числу составной символ, так, как мы делали это в системе pr. Вот наше обозначение натуральных чисел.
нуль 0
один S0
два SS0
три SSS0
и т. д.
Символ S интерпретируется как «следующий за.» Таким образом, строчка SS0 интерпретируется буквально как «следующий за следующим за нулем.» Подобные строчки называются символами чисел.
Переменные и терминыЯсно, что нам нужен способ говорить о неопределенных, или переменных числах. Для этого мы будем использовать буквы а, b, с, d, e. Однако пяти букв будет недостаточно Так же, как для атомов в исчислении высказывании, нам требуется их неограниченное количество Мы используем похожий метод для получения большего количества переменных — добавление любого количества штрихов. Например:
e
d'
с"
b'''
a''''
все являются переменными.
В каком-то смысле, использовать целых пять букв алфавита — это слишком большая роскошь, так как мы могли бы легко обойтись просто буквой а и штрихами. Впоследствии я действительно опущу буквы b,c,d, и e — результатом будет более строгая версия ТТЧ, сложные формулы которой будет немного труднее расшифровать. Но пока давайте позволим себе некоторую роскошь! Как насчет сложения и умножения? Очень просто: мы будем использовать обычные символы «+» и «*». Однако мы также введем требование скобок (мы мало помалу углубляемся в правила, определяющие правильно построенные строчки ТТЧ). Например, чтобы записать «b плюс с» и «b, умноженное на с», мы будем использовать строчки:
(b + с)
(b*с)
В отношении скобок послабления быть не может; опустить их — значит произвести неправильно сформированную формулу. («Формула?» Я использую этот термин вместо слова «строчка» лишь для удобства. Формула — это просто строчка ТТЧ.)
Кстати, сложение и умножение всегда будут рассматриваться как бинарные операции, то есть операции, объединяющие не более, чем два числа. Таким образом, если вы хотите записать «1+2+3», вы должны решить, какое из двух выражений использовать:
(S0+(SS0+SSS0))
((S0+SS0)+SSS0)
Теперь давайте символизируем понятие равенства. Для этого мы просто используем «=». Преимущество этого символа, принадлежащего Ч — неформальной теории чисел — очевидно: его весьма легко прочесть. Неудобство же при его использовании напоминает проблему, возникавшую при использовании слов «точка» и «линия» в формальном описании геометрии: если ослабить внимание, то легко спутать обыденное значение этих слов с поведением символов, подчиняющихся строгим правилам. Обсуждая проблемы геометрии, я различал между обыденными словами и терминами — последние печатались заглавными буквами. Так, в эллиптической геометрии ТОЧКОЙ было объединение двух точек. Здесь такого различия не будет, поэтому читатель должен постараться не спутать символ с многочисленными ассоциациями, которые он вызывает. Как я сказал ранее о системе pr, строчка --- не является числом 3; вместо этого она действует изоморфно с числом 3, по крайней мере, при сложении. То же самое можно сказать и о строчке SSS0.
Атомы и символы высказыванийВсе символы исчисления высказываний, кроме букв, с помощью которых мы получали атомы (P, Q, R), будут использованы в ТТЧ; при этом они сохранят ту же интерпретацию. Роль атомов будут играть строчки, которые, будучи интерпретированы, дадут равенства, такие как S0=SS0 или (S0×S0) = S0. Теперь у нас есть достаточно данных, чтобы перевести несколько простых суждений в запись ТТЧ:
2+3 равняется 4: (SS0+SSS0)=SSSS0
2+2 не равняется 3: ~(SS0+SS0)=SSS0
- Предыдущая
- 68/233
- Следующая